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Introduction 

In 1879 Alberto Castigliano, an Italian railroad engineer, 

published a book in which he outlined a method for determining 

the deflection or slope at a given point in a structure, be it a truss, 

beam, or frame. This method, which is referred to as 

Castigliano's second theorem, or the method of last work, 

applies only to structures that have constant temperature, 

unyielding supports, and linear elastic material response. If the 

displacement of a point is to be determined, the theorem states 

that it is equal to the first partial derivative of the strain energy 

in the structure with respect to force acting at a point and in the 

direction of displacement. In a similar manner, the slope at a 

point in a structure is equal to the first partial derivative of the 

strain energy in the structure with respect to a couple moments 

acting at the point and in the direction of rotation. Among the 

works on the application of the Castigliano’s second theorem, 

the classic theories of Timoshenko S.P. and Young D.H. (1965) 

[1] and the works of Hibbeler R.C. (2013) [3], among others 

[4][5][6], stand out. 

 

Castigliano’s Second Theorem 

When an elastic material undergoes deformations, the 

transformation of the external work occurs due to the external 

loads in strain energy. This energy is accumulated in the material 

during deformation, which after release causes the material to 

return to its original state of rest. To derive Castigliano’s second 

theorem, consider a structure of any arbitrary shape which is 

subjected to a series of n forces P1, P2, ..., Pn. Since the external 

work done by these loads is equal to the internal strain energy 

stored in the structure, we can write, 

 

 
 

The external work is a function of external loads. Thus, 

 

 
Now, if any of the forces, says Pi, is increased by a differential amount dPi, the internal work is also increased such that the new 

strain energy becomes, 

 

 
 

This value, however, should not depend on the sequence in 

which the n forces are applied to the structure. For example, if 

we first apply dPi to the structure first, then this will cause the 

structure to be displaced a differential amount dΔi in the 

direction of dPi. If Ue = ½ PΔ, the increment of strain energy 

would be ½ dPidΔi. This quantity, however, is a second-order 

differential and may be neglected, as adopted in the present 

work. Further application of the loads P1, P2, ..., Pn, which 

displace the structure Δ1, Δ2, ..., Δn, yields the strain energy. 
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Abstract 

The paper present is to analyse statically indeterminate plane structures, using the Castigliano’s second theorem and the 

“Theorem of Last Work” [1] in the determination of the statically indeterminate constants. For this, we consider models of 

structures subjected to different loads where the boundary conditions in the external supports are defined, the statically 

indeterminate constants being determined as unknowns. Noteworthy are the analysis of the classical equations presented for 

Timoshenko S.P. e Young D.H. (1965) [1] of the elastic theories in the development of the mathematical models. We use 

numerical simulation using the finite element program (FEA) Ansys® [2], where we compare the numerical and analytical 

results obtained by the equations of the present work. 
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Here, as before, Ui is the internal strain energy in the structure, caused by the loads P1, P2, ..., Pn, and dPidΔI am the additional strain 

energy caused by dPi. 

 

In summary, then, Eq. (3) represents the strain energy in the 

structure determined by first applying the loads P1, P2, ..., Pn, 

then dPi, and Eq. (4) represents the strain energy determined by 

first applying dPi and then the loads P1, P2, ..., Pn. Since these 

two equations must be equal, we require, 

 

 
 

Which proves the theorem; i.e., the displacement Δi in the direction of Pi am equal to the first partial derivative of the strain energy 

with respect to Pi. 

 

It should be noted that Eq (5) is a statement regarding the 

structure’s compatibility. Also, the above derivation requires 

that only conservative forces be considered for the analysis. 

These forces do work that is independent of the path and 

therefore crate no energy loss. Since forces causing a linear 

elastic response are conservative, the theorem is restricted to 

linear elastic behavior of the material. 

 

Case Study 

In the respective case studies, the equation of the Castigliano’s 

second theorem will be used to calculate the flexibility 

coefficients. The symbology adopted is described below: 

 

δi0 - Displacement at the point where the load is applied Xi due 

to the actual load of the structure, "i" varies from 1 to the total 

number of constants; 

δii - Displacement at the point where the load Xi is applied due 

to the load Xi; δij - Displacement at the point where the load Xi is 

applied due to load Xj; 

δij = δji - reciprocity of the displacements; 

ki – Spring constant elastic; 

X'i - Virtual load at the point of application of charge Xi; 

n - Number of sections for the determination of internal efforts; 

m - Number of span or segments of the structure; 

Mn – Internal bending moment in section "n"; 

Nn – Internal normal force at section "n"; Tn - Internal torsion 

moment at section "n"; Qn - Internal shear force at section "n"; 

 

From the cross section and material by span or segment of the 

structure, we have: 

Im - Moments of inertia; 

Am - Area; 

Jm – Polar moments of inertia; 

Avm - Effective area of shear; 

E - Modulus of elasticity for the material; 

G – Shear modulus of elasticity for the material; 

EIm - Flexural stiffness; 

EAm - Normal effort rigidity; GJm - Torsion stiffness; GAvm - 

Shear stiffness; 

L - Interval of integration or length of the structure segment. 

 

The main equations used in the calculation of the coefficients of flexibility: Coefficient of flexibility at the point where the load "i" 

is applied due to the actual load: 

 
 

Coefficient of flexibility at the point where the load "i" is applied due to the load "i" itself: 

 

 
 

Flexibility coefficient at the point where load "i" is applied due to load "j": 

 

 
 

Since, after the respective partial derivatives, the charges when defined as virtual X'i are equal to zero, otherwise it will be 

equal to the value of the actual load applied. 

 

After determining the flexibility coefficients, the displacement 

compatibility equation must be applied to obtain the statically 

indeterminate constants. In specific cases, where there is no 

elastic support but only rigid supports, where the respective 

displacements are equal to zero, the Theorem of Last Work can 

be applied for the determination of the statically indeterminate 

constants. Therefore, the equations of compatibility of 

displacements and for the Theorem of Last Work are given, 

respectively, by: 
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In the work developed by Timoshenko S.P. and Young DH 

(1965) [1], Hibbeler R.C. (2013) [3], Soriano H.L. and S.S. 

Lima (2006) [4], among others, it is verified that the influence 

of shear forces represents approximately 5% in many cases can 

be disregarded, representing a significant simplification in the 

calculations. In the case study, presented in item 3.1, it is shown 

the percentage variation of the influence of the shear forces on 

the final result. In the other case studies, this influence is not 

considered as a function of the analysis presented in the 

aforementioned item. 
 

Statically indeterminate beam supported on the two springs 

Consider the statically indeterminate beam, set at one end and 

supported on the two springs of elastic constants k1 = 20000 

kN/m and k2 = 30000 kN/m, applied to supports "B" and "C" 

respectively. The beam has a constant bending stiffness EI = 

18370,8 kNm² and it is subjected to uniformly distributed loads 

q1 = 2,0 kN/m and q2 = 4,0 kN/m, a concentrated load P = 10,0 

kN and at a concentrated moment M = 20,0 kNm. The beam has 

dimensions L1 = 3,0 m, L2 = 2,0 m and L3 = 4,0 m, as represented 

in Figure 1 below. 

 

Figure 1: Statically indeterminate beam. 

 

The representation of the adopted cuts, as well as the definition of the statically indeterminate constants, are represented in 

Figure 2 below.  

 

Figure 2: Sections and unknowns constants. 

 

For the determination of these forces, bending moment and constant forces, we consider the sections 1, 2 and 3, defined according 

to the distribution of the loads and supports. Supports "B" and "C" will be defined as superabundant, with X1 and X2 being the 

unknown’s constants. In this step, we consider X'i (i = 1 and 2) as virtual loads.  
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The coefficients of flexibilities are obtained through Eq. (6) to (8), due to shear stress and bending moment, applicable in this case. 

Substituting the problem data in Eq. (11) to (13) and consequently in Eq. (6) to (8), we obtain the coefficients of flexibility. 

Therefore, the equation of compatibility of displacements, Eq. (9), is written in the form: 
 

– 0,043106 + 0,000566 X 1 + 0.001985X 2 = 0 

                                         – 0,247882 + 0,001985X 1 + 0,013338X 2 = 0                                   (14) 
 

Solving Eqs. (14) simultaneously, results in the statically indeterminate constants: X1 = 22,98 kN and X2 = 15,16 kN. Being the 

reactions in the supports "B" and "C" respectively, which makes the beam statically determined. Considering only the influence of 

the bending moment, the equation of compatibility of displacements, Eq. (9), is written in the form; 
 

- 0,042255 + 0,000540 X 1 + 0.001960 X 2 = 0 

                                          - 0,246274 + 0,001960 X 1 + 0,0132608X 2 = 0                                    (15) 
 

Solving Eq. (15) simultaneously, one has: X1 = 23,41 kN and X2 = 15,11 kN. In this case, the shear stress changes by approximately 

2% the final result.  
 

After analyzing the beam by the Ansys® finite element program, considering the BEAM3 element for the beam and the 

COMBIN14 element for the springs, the following results are obtained: X1 = 23,42 kN, for the vertical displacement δ1 = 

1,17E-3 m and X2 = 15,11 kN, for the vertical displacement δ2 = 5,04E-4 m. 
 

Statically indeterminate beam supported on the three 

springs 

Consider the statically indeterminate beam set in support "A" 

and supported on three springs of elastic constants k1 = 20000 

kN/m, k2 = 25000 kN/m and k3 = 30000 kN/m, on supports "B ", 

"C " and "D" respectively. The beam has a constant bending 

stiffness EI = 18370,8 kNm² and it is subjected to uniformly 

distributed loads q1 = 2,0 kN/m and q2 = 4,0 kN/m, a 

concentrated load P = 10,0 kN and at a concentrated moment M 

= 20,0 kNm and, has dimensions L1 = 3,0 m, L2 = 2,0 m and L3 

= 4,0 m, as represented in Figure 3 below.  

 

 
Figure 3 - Beam statically undetermined. 
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The representation of the adopted cuts, as well as the definition of the statically indeterminate constants, are represented in 

Figure 4 below. 

 
Figure 4: Cuts and statically indeterminate constants. 

 

Based on the verification made in item 3.1, only the influence of 

the bending moments will be considered, for that, the cuts 1, 2 

and 3, defined according to the distribution of loads and 

supports, are considered. Supports "B", "C" and "D" are defined 

as superabundant, X1, X2 and X3 being the statically 

indeterminate constants. In this step, we consider (i = 1, 2 and 

3) as virtual loads. 

 

 
 

 

 
 

Substituting the problem data in Eq. (16) to (18) and consequently in Eq. (6) to (8), we obtain the flexibility coefficients due only 

to the bending moment. Therefore, the equation of compatibility of displacements, Eq. (9), is written in the form: 

 

– 0,042255 + 0,000540 X 1 + 0,000979 X 2 + 0,001960 X 3 = 0 

                      – 0,102858 + 0,000979 X 1 + 0,002308X 2 + 0,004990 X 3 = 0               (19) 

– 0,246274 + 0,001960 X 1 + 0,004990 X 2 + 0,013261X 3 = 0 

 

Solving Eq. (19) simultaneously, one has: X1 = 1,08 kN, X2 = 

23,06 kN and X3 = 9,74 kN. Since X1, X2 and X3, statically 

indeterminate constants, are the reactions in supports "B", "C" 

and "D" respectively, which makes the beam statically 

determined. 

 

After analyzing the beam by the Ansys® finite element 

program, considering the BEAM3 element for the beam and the 

COMBIN14 element for the springs, the following results 

are obtained: X1 = 1,08 kN, for the vertical displacement δ1 = 

5,40E-5 m, X2 = 23,06 kN, for the vertical displacement δ2 = 

9,22E-4 m and X3 = 9,74 kN, for the vertical displacement δ3 = 

3,24E-4 m. 

 

Statically indeterminate frame supported by two springs 

Consider the statically indeterminate frame fixed in the support 

"A" and supported of the two springs in the support "C". The 

springs have elastic constants k1 = 25000 kN/m and k2 = 40000 

kN/m respectively. The frame has a constant bending stiffness 

EI = 246400 kNm² and, subject to uniformly distributed loads q1 

= 4,0 kN/m and q2 = 6,0 kN/m and at a concentrated load P = 

10,0 kN. It has dimensions L = 4,0 m, H1 = 2,0 m and H2 = 4,0 

m, as represented in Figure 5 below. 
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Figure 5: Statically indeterminate frame. 

 

The representation of the adopted cuts, as well as the definition of the statically indeterminate constants, are represented in 

Figure 6 below. 

 
Figure 6: Section and statically indeterminate constants. 

 

For the determination of the bending moments, we consider the sections 1, 2 and 3. The support "C" is defined as superabundant, 

with X1 and X2 being the statically indeterminate constants. In this step, we consider (i = 1 and 2) as virtual loads. 

 

 
 

Substituting the problem data in Eq. (20) to (22) and consequently in Eq. (6) to (8), we obtain the coefficients of flexibility. 

Therefore, the equation of compatibility of displacements, Eq. (9), is written in the form: 

 

– 0,004307 + 0,000386 X 1 + 0,000130 X 2 = 0 

                    – 0,001905 + 0,000130 X 1 + 0,000112 X 2 = 0            (23) 
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Solving Eq. (23) simultaneously, it follows that: X1 = 8,89 kN 

and X2 = 6,72 kN. Since X1 and X2 are the statically indeterminate 

constants, it makes the frame statically determined. 

 

By analyzing the frame by the Ansys® finite element program, 

considering the BEAM3 element for the beam and the 

COMBIN14 element for the springs, the following results 

are obtained: X1 = 8,91 kN, for the vertical displacement δ1 = 

3,56E-3 m and X2 = 6,68 kN, for the vertical displacement δ2 = 

1,67E-3 m.  

 

Statically indeterminate truss supported on the two springs 

Consider the statically indeterminate lattice articulated in node 

"A", supported on node "B" and supported on two springs, one 

vertical and one horizontal, in node "C". The springs have elastic 

constants k1 = 10000 kN/m and k2 = 20000 kN/m respectively. 

The bars of the truss have constant axial stiffness EA = 412334,0 

kN and it is subjected to a concentrated load P = 10,0 kN 

inclined from 30° to the vertical, applied at node "C". The trellis 

has dimensions L = 3,0 m and H = 2,0 m, as shown in Figure 7 

below. 

 
 

Figure 7: Statically indeterminate truss. 
 

The representation of the bars, as well as of the statically indeterminate constants, are represented in Figure 8 below. 
 

 
 

Figure 8: Trellis bars and statically indeterminate constants. 
 

For the determination of the forces acting on the bars, the support "C" is defined as superabundant, with X1 and X2 being the statically 

indeterminate constants. In this step, we consider (i = 1 and 2) as virtual loads. The coefficients of flexibilities are obtained through 

Eq. (6) to (8), due to only the normal internal stress. Since Nn and Ln are constants in each bar, the equations can be presented as 

follows: 
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The displacement compatibility equation, Eq. (9), is written as: 

 

 
 

Solving Eq. (27) simultaneously, it follows that: X1 = -2,93 kN and X2 = 1,73 kN. 

 

Analyzing the lattice by the Ansys® finite element program, 

considering the LINK1 element for the bars and the 

COMBIN14 element for the springs, the following results are 

obtained: X1 = -2,93 kN, for the vertical displacement δ1 = 2,93E-

4 m and X2 = 1,73 kN, for the vertical displacement δ2 = 8,64E-

5 m. 

 

 

Symmetrical parabolic two-hinged arch 

Consider the symmetrical parabolic arch fixed in the support’s 

"A" and "B", the span between the supports is L = 10,0 m, 

maximum height f = 3,0 m and subjected to a uniformly 

distributed load q = 6,0 kN/m. The axis of the arc is considered 

to be a parabola defined by the equation y = 4fx² / L². The cross 

section is rectangular and constant of width b = 120,0 mm 

and height h = 300,0 mm, where E = 21,0 GPa. 

 
Figure 9: Symmetrical parabolic two-hinged arch. 

 

In this case the "Theorem of Last Work" will be applied for the 

determination of the statically indeterminate constants. The 

model for the analysis of the arch with the reactions in the 

supports, internal stresses and statically indeterminate constants, 

are represented in figure 10 below. 

 
Figure 10: Model for parabolic arch analysis. 

 

From the symmetry condition, from the point "C", we have: 

 
Transferring the loads from the left half of the arch to the point "C", we have: 
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Analyzing the section 1 from the point "C", neglecting the effect of the shear forces, one has: 

 

 
From Eq. (10), we have: 

 

 
 

Solving Eq. (33) and (34), it follows that: H = 24,77 kN and MA = 0,47 kNm. 

 

By analyzing the parabolic arc by the Ansys® [2] finite element program, considering the BEAM3 element for the arc, we obtain 

the following results: H = 24,66 kN and MA = 0,42 kNm. 

 

Comments and Conclusions 

The proposed model based on the classical equations of 

Timoshenko S.P. and Young D.H. (1965) [1] and the works of 

Hibbeler R.C. (2013) [3], present good results compared to the 

numerical results obtained by the Ansys® [2] finite element 

program. The considerations adopted for disregarding the 

effects of shear forces did not significantly affect the final results 

presented. The results presented, based on the classical theories, 

can help in the analysis of structural elements, being another 

source of consultation assisting in the definition of the structural 

parameters and in the boundary conditions. 
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