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1. Introduction 

A drug, in the context of medicine, is a chemical or biological 

substance designed to interact with biological processes within 

an organism to treat, diagnose, or prevent disease (Benedetti, 

2014). These agents can originate from diverse sources, 

including natural, semisynthetic, or synthetic origins(Pollock et 

al., 2024). The continuous need for new medications arises from 

several factors, including the toxicity and side effects of existing 

drugs(Kroschinsky et al., 2017), the emergence of new 

diseases(Khan et al., 2020), the development of drug 

resistance(Jackson et al., 2018), and advancements in our 

understanding of health conditions(Subbiah, 2023). These 

challenges actuate pharmaceutical research and development to 

innovate, improve treatment efficacy and address previously 

unmet medical needs.  
 

The traditional process of drug discovery follows a well-

established procedure, beginning with the identification and 

validation of molecular targets(Salazar & Gormley, 2017). This 

is typically followed by high-throughput screening of extensive 

chemical libraries to identify potential lead compounds(Sinha 

&Vohora, 2017). Conventional drug discovery methods heavily 

rely on empirical approaches, involving extensive in vitro and 

in vivo testing to evaluate a compound's efficacy, 

pharmacokinetics and toxicity. Although this approach has led 

to the development of numerous successful therapies, it is both 

time-consuming and costly, often requiring over a decade and 

more than $2.5 billion to successfully bring a new drug to 

market(Kumari et al., 2022; Schlander et al., 2021). 
 

To overcome these challenges, alternative approaches such as 

drug repurposing, also known as drug repositioning, have gained 

prominence(Ahmad et al., 2021; Talevi& Bellera, 2020a). Drug 

repositioning involves identifying new therapeutic uses for 

existing drugs, whether FDA-approved, withdrawn, or outdated. 

This approach leverages the well-established safety profiles of 

known drugs, allowing for faster and less costly drug 

development(Gazerani, 2019). Drug repositioning can also 

involve using an existing drug as a template for synthesizing 

new analogs that exhibit activity against other diseases(Cha et 

al., 2018). This strategy has distinct advantages over 

conventional drug discovery, including shorter development 

timelines, reduced investment needs, and higher success  
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Abstract 

The emergence of drug-resistant and novel diseases underscores the urgency for innovative therapeutic interventions. Drug 

repositioning and computational approaches offer an efficient pathway to accelerate drug discovery and development. This study 

leverages these techniques in designing and evaluating derivatives based on the FDA-approved compound, pyridine-4-

carbohydrazide, to assess how structural modifications impact therapeutic potential. 

Methods: The derivatives were designed using a chemical library of small molecules containing imine functional groups, built 

upon pyridine-4-carbohydrazide scaffolds (INH01-INH19). Computational tools, including Molinspiration Cheminformatics, 

way2drug, and the pkCSM platform, were utilized to evaluate each derivative's physicochemical properties, drug-likeness, 

bioactivity scores, potential biological activities, and ADME (Absorption, Distribution, Metabolism, Excretion) profiles. 

Results: Most derivatives demonstrated enhanced physicochemical characteristics, adhering to both Lipinski’s Rule of Five and 

Veber’s Rule. Bioactivity scores varied with moderate to inactive interactions across six target classes, ranked as follows: 

enzyme inhibitors, kinase inhibitors, G-protein-coupled receptors, protease inhibitors, nuclear receptors, and ion channel 

modulators. Notably, derivatives INH03, INH09, INH14, and INH19 exhibited high predicted activity in multiple therapeutic 

areas, indicating potential applications in antibacterial, antiviral, antiprotozoal, anti-inflammatory and anticancer treatments. 

Moreover, structural modifications in these derivatives positively influenced ADME profiles compared to pyridine-4-

carbohydrazide, though certain compounds presented challenges, such as limited solubility, P-glycoprotein interactions and 

CYP450 inhibition.  

Conclusions: These Schiff base derivatives stand out as promising candidates for further drug development, underscoring the 

importance of computational strategies in optimizing drug discovery and design. 
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rates(Pushpakom et al., 2018; Wu et al., 2019). Approximately 

33% of drugs approved in recent years have resulted from drug 

repositioning efforts, underscoring its effectiveness as a modern 

drug discovery strategy(Talevi& Bellera, 2020b). 
 

Advances in computational technologies, bioinformatics, and 

proteomics have significantly accelerated the drug discovery 

process through the integration of in-silico methods(Liao et al., 

2022). Computational approaches, commonly known as 

computer-aided drug design (CADD), have become 

indispensable tools at every stage of drug 

development(Kapetanovic, 2008). CADD enables the 

transformation of biological target information into 

computational models, allowing for data computation, analysis, 

and the prediction of compound activities. Molecular docking, 

virtual screening, and machine learning help filter large 

chemical libraries into smaller, more promising subsets for 

experimental validation. Moreover, CADD offers critical 

insights for lead compound optimization, focusing on improving 

binding affinity, pharmacokinetics, and toxicity profiles, as well 

as designing novel compounds via structural 

modifications(Sliwoski et al., 2014). 
 

The benefits of CADD are vast, providing substantial reductions 

in the time, cost, and experimental scope traditionally required 

for drug discovery. By predicting and optimizing compound 

properties in silico, CADD can shorten the research timeline and 

reduce development costs by up to 50%(Sachin S Padole et al., 

2022; Xiang et al., 2012). Additionally, as computational 

accuracy continues to improve, these predictions increasingly 

align with experimental outcomes, bolstering the credibility and 

reliability of in silico approaches. Today, CADD is widely 

employed in the search for treatments for a range of diseases, 

including cancer(Chua et al., 2023; Reddy et al., 2007), 

Diabetes(Balamurugan et al., 2012; Semighini et al., 2011), and 

infectious diseases caused by viruses (Chen et al., 1994; Doyon 

et al., 2005; Yang et al., 2024)and bacteria(Duan et al., 2019; 

Njogu et al., 2016; Supuran, 2017). 
 

Pyridine-4-carbohydrazide, commonly known as isoniazid, has 

served as a cornerstone in the treatment of tuberculosis. Its 

efficacy stems from its ability to inhibit the synthesis of mycolic 

acids, essential components of the mycobacterial cell 

wall(Vilchèze&Jacobs, 2019). The chemical structure of 

isoniazid, as depicted in Figure 1, presents a versatile molecular 

framework for the development of agents with a broad spectrum 

of biological activities.One of the common approaches 

isreplacing the hydrazide hydrogen with different functional 

groups can alter the molecule's polarity, hydrophobicity, 

hydrogen bonding capacity, and overall molecular 

conformation(Mali et al., 2021; Raczuk et al., 2022). This 

versatility has led to the synthesis of a plethora of derivatives 

with expanded therapeutic applications such as anti-

inflammatory (Zhang et al., 2020), antitubercular(Aboui-Fadl et 

al., 2003), anticancer(Firmino et al., 2016; Rodrigues et al., 

2014), antimicrobial and urease inhibitory activity(Habala et al., 

2016), antidepressant and analgesic properties(Uddin et al., 

2020), in the treatment of Alzheimer’s disease(Santos et al., 

2020). Additionally, the pyridine moiety itself plays a crucial 

role in enhancing drug permeability, biochemical potency, and 

metabolic stability. Moreover, the pyridine ring's ability to form 

various non-covalent interactions with protein targets facilitates 

drug-target binding (Ling et al., 2021; Pennington & Moustakas, 

2017). The FDA database provides compelling evidence of the 

prevalence of pyridine-based drugs. Approximately 18% of 

approved heterocyclic drugs incorporate pyridine or its 

derivatives, highlighting its significance as a structural motif in 

medicinal chemistry(Ling et al., 2021). 

 
O

NH2

NH

N

 
Figure 1: Chemicalstructure of Pyridine-4-Carbohydrazide (Isoniazid, INH). 

 

Based on these advancements, this study aims to design and 

evaluate a chemical library of small molecules incorporating 

imine functional groups and pyridine-4-carbohydrazide 

scaffolds. Leveraging computational methods, we will predict 

the physicochemical properties, drug-likeness, bioactivity 

profiles, and ADME characteristics of these derivatives before 

synthesis and screening. By doing so, we aim to reduce resource 

waste and avoid unnecessary time and expenses associated with 

screening compounds that have a low likelihood of activity. This 

proactive approach is intended to streamline the identification of 

promising agents, enhancing the efficiency of the drug 

discovery pipeline and reducing the risk of failure 

in later stages. 

 

2. Materials and Methods 

Design Strategy 

In this study, compounds (Schiff bases) were designed by 

utilizing the FDA-approved drug pyridine-4-carbohydrazide(A) 

and hybridized with substituted aldehydes (B). The imine group 

(C),formed during this process, was used to augment the 

lipophilic behavior part, as illustrated in Scheme 1. The R 

groups vary in type, position, partition coefficient, and hydrogen 

bonding capacity. This modification was intended to investigate 

the influence of various substituents on the phenyl ring and their 

impact on the biological activity of these compounds.A total of 

nineteen compounds were designed and assigned the code 

INH01-INH19. 
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Scheme 1: TheDesign Concept for Schiff Base Compounds (probably use large letter C in the figure!) 

 

In silico Study 

This study was conducted using a HP computer system with the 

following specifications: Windows 11 operating system, Intel® 

Core™ i5-1135G7 Quad-core Processor @ 2.40GHz, and 8 

Gigabytes of RAM. The chemical structures of nineteen 

compounds (INH01-INH19) were initially generated using the 

ChemDrawsoftware suite as in Table 1A. 
 

The in-silico workflow commenced with the preparation of 

molecular structures for the designed compounds. These 

structures were first constructed in the two-dimensional (2D) 

format using Chem3D Ultra software and saved in the Structure 

Data File (SDF) format. The 2D molecular representations were 

then converted into SMILES (Simplified Molecular Input Line 

Entry System) format using the online SMILES Translator tool 

provided by the National Cancer Institute 

(https://cactus.nci.nih.gov/translate/). To ensure structural 

accuracy, the resulting SMILES strings were meticulously 

validated against their original chemical structures, as detailed 

in Table 1B. 

 

Following validation, the SMILES data served as the key input 

for subsequent predictive analysis. The data was uploaded to 

various online platforms, enabling the calculation of essential 

molecular properties and the prediction of potential biological 

activities for the designed compounds. This computational 

workflow provided valuable insights into the physicochemical, 

drug-likeness, bioactivity, and pharmacokinetic characteristics 

of the pyridine-4-carbohydrazide derivatives under 

investigation. The specific online platforms employed and the 

details of the obtained predictions are elaborated upon in 

subsequent sections. 
 

Physicochemical, Drug-likeness, and bioactivity Properties 

predictions 

The physicochemical properties, drug-likeness, and bioactivity 

of the compounds were evaluated using the 

molinspirationchemo informatics platform. Drug-likeness 

assessments were conducted according to Lipinski's Rule of 

Five and Veber's rules. Additionally, the platform predicted 

bioactivity against six different protein targets: GPCR, ICM, KI, 

NRC, PI, and EI. 

 

Prediction of Activity Spectra for Substances (PASS) 

To further elucidate the biological activity spectrum of the 

pyridine-4-carbohydrazide derivatives, the PASS online tool 

(https://www.way2drug.com/passonline/) was employed. 

 

ADME Prediction 

The ADME properties of the derivatives were predicted using 

the pkCSM-Pharmacokinetics software 

(https://biosig.lab.uq.edu.au/pkcsm/). Established 

methodologies documented in the scientific literature served as 

the foundation for these predictions. 

 

Table 1A: Codes and chemical Structures of the designed compounds. 

 

Codes Chemical Structure Codes Chemical Structure 

INH01 

O

N

NH

N

 

INH10 

CH3

O NO2

O

N

NH

N

 

INH02 

OH

O

N

NH

N

 

INH11 
CH3

O

OH

O

N

NH

N
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INH03 NO2

O

N

NH

N

 

INH12 

NO2

O

N

NH

N

 

INH04 

Cl

O

N

NH

N

 

INH13 ONH

O

N

N

 

INH05 CH3

O

OH

O

N

NH

N

 

INH14 
CH3

CH3

N

O

N

NH

N

 

INH06 CH3O

OH

O

N

NH

N

 

INH15 

O

N

NH

N

 

INH07 

CH3

CH3

N

O

N

NH

N

 

INH16 S

O

N

NH

N

 

INH08 

CH3

O

O

N

NH

N

 

INH17 

O

N

NH

N

O2N

 

INH09 

O

N

NH

N

OH

 

INH18 
N

NH

N

O

 

INH19 

O

N

NH
N

 
 

Table 1B: IUPAC names and canonical SMILES of the predicted compounds. 
 

Codes Character  

INH01 

IUPAC 

name 
N'-[phenylmethylidene] pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccccc1)c2ccncc2 

INH02 

IUPAC 

name 
N-(2-hydroxybenzylidene) pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccccc1O)c2ccncc2 

INH03 

IUPAC 

name 
N'-[(3-nitrophenyl)methylidene]pyridine-4-carbohydrazide 

SMILES C1=CC(=CC(=C1)[N+](=O)[O-])C=NNC(=O)C2=CC=NC=C2 

INH04 

IUPAC 

name 
N`-[(Z)-(4-Chlorophenyl)methylidene]pyridine-4-carbohydrazide 

SMILES ClC1=CC=C(\C=N\NC(=O)C2=CC=NC=C2)C=C1 

INH05 

IUPAC 

name 
N-[(4-Hydroxy-3-methoxybenzylidene) pyridine-4-carbohydrazide 

SMILES COC1=C(C=CC(=C1)C=NNC(=O)C2=CC=NC=C2)O 

INH06 

IUPAC 

name 
(N'-(3-ethoxy-4-hydroxybenzylidene)pyridine-4-carbohydrazide 

SMILES CCOc2cc(C=NNC(=O)c1ccncc1)ccc2O 

INH07 

IUPAC 

name 
N-(4-(dimethylamino)benzylidene)pyridine-4-carbohydrazide 

SMILES CN(C)C1=CC=C(C=C1)C=NNC(=O)C2=CC=NC=C2 

INH08 

IUPAC 

name 
(E)-N'-(4-methoxybenzylidene)pyridine-4-carbohydrazide 

SMILES COc2ccc(C=NNC(=O)c1ccncc1)cc2 

INH09 

IUPAC 

name 

(E)-N'-((2-hydroxynaphthalen-1-yl)methylene)pyridine-4-

carbohydrazide 

SMILES O=C(NN=Cc1c(O)ccc2ccccc12)c3ccncc3 
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INH10 

IUPAC 

name 
N'-(2-methoxy-4-nitrobenzylidene)pyridine-4-carbohydrazide 

SMILES COc1cc(N(=O)=O)ccc1C=NNC(=O)c2ccncc2 

INH11 

IUPAC 

name 
N'-(2-hydroxy-5-methoxybenzylidene)pyridine-4-carbohydrazide 

SMILES COc2ccc(O)c(C=NNC(=O)c1ccncc1)c2 

INH12 

IUPAC 

name 
N'-(4-nitrobenzylidene)pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccc(N(=O)=O)cc1)c2ccncc2 

INH13 

IUPAC 

name 
N'-(furan-2-ylmethylene)pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccco1)c2ccncc2 

INH14 

IUPAC 

name 

N'-((4-(dimethylamino)naphthalen-1-yl)methylene)pyridine-4-

carbohydrazide 

SMILES CN(C)c2ccc(C=NNC(=O)c1ccncc1)c3ccccc23 

INH15 

IUPAC 

name 
N-(4-methylbenzylidene) pyridine-4-carbohydrazide 

SMILES CC1=CC=C(C=C1)C=NNC(=O)C2=CC=NC=C2 

INH16 

IUPAC 

name 
N'-[thiophen-2-yl] pyridine-4-carbohydrazide 

SMILES C1=CSC(=C1)/C=N\NC(=O)C2=CC=NC=C2 

INH17 

IUPAC 

name 
N'-[(2-nitrophenyl)methylidene]pyridine-4-carbohydrazide 

SMILES C1=CC=C(C(=C1)/C=N/NC(=O)C2=CC=NC=C2)[N+](=O)[O-] 

INH18 

IUPAC 

name 
N-[(E)-[(Z)-3-phenylprop-2-enylidene]amino] pyridine-4-carbohydrazide 

SMILES C1=CC=C(C=C1)/C=C\C=N\NC(=O)C2=CC=NC=C2 

INH19 

IUPAC 

name 
N'-[(E)-(naphthalen-2-yl)methylidene]pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1cccc2ccccc12)c3ccncc3 

INH 

IUPAC 

name 
Pyridine-4-carbohydrazide 

SMILES C1=CN=CC=C1C(=O)NN 

 

Table 1C: Distribution of predictors used in the in-Silico Study. 

 

Parameter Predictor  Unit Requirement value 

Physiochemical and drug-likeness properties  

 L
ip

in
sk

i'
s 

R
u

le
 

 

Molecular weight (MW) g/mol <500 

Partition coefficient (LogP) - < 5 

Number of hydrogen bond 

acceptors  
- <10 

Number of hydrogen bond donors  - < 5 

V
eb

er
 

R
u

le
 

Number of rotatable bonds (N-

rotb) 
- < 5 

Topological polar surface area 

(TPSA) 
- <140 

Bioactivity score properties  

B
io

a
ct

iv
it

y
sc

o
re

 

G-protein-coupledreceptor 

ligands (GPCR) 
- 

▪ Compounds with a bioactivity 

score greater than 0.00 are considered 

active. 

 

▪ Compounds with a bioactivity 

score ranging from -0.50 to 0.00 are 

moderately active. 

 

▪ Compounds with a bioactivity 

score less than -0.50 are deemed inactive. 

Ion channel modulation (ICM) - 

Kinase inhibitor (KI) - 

Nuclear receptor ligands (NRL) - 

Protease inhibitor (PI) - 

Enzyme inhibitor (EI) - 

Pharmacokinetic properties  
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Parameter Predictor  Unit Requirement value 

A
b

so
rp

ti
o

n
 

Water solubility LogS - 

Intestinal absorption (HIA) % Absorbed 
▪ High absorption: %Abs > 30% 

▪ Poorly absorption: %Abs < 30% 

Caco-2 permeability (Caco-2) 
log Papp in 10–

6 cm/s 
High permeability > 0.90 

Skin permeability (SP) log Kp Logkp> -2.5 

P-glycoprotein substrate (P-gp) Yes / No  - 

P-glycoprotein I inhibitor Yes / No - 

P-glycoprotein II inhibitor Yes / No - 

D
is

tr
ib

u
ti

o
n

 

The volume of distribution (VDss) log L/kg Low: VDss< -0.15 and high: VDss> 0.45 

Fraction unbound (FU) - High > 0.45 

BBB permeability (BBB) log BB 

▪ LogBB Value < -1: poorly.  

▪ LogBB Value > 0.3: crosses the 

BBB. 

CNS permeability log PS 

▪ Log PS Value < -3: unable to 

penetrate. 

▪ Log PS Value > -2: penetrates 

CNS. 

M
et

a
b

o
li

sm
 

CYP1A2 inhibitor Yes / No - 

CYP3A4 substrate/inhibitor Yes / No - 

CYP2C8 inhibitor Yes / No - 

CYP2C9 substrate/inhibitor Yes / No - 

CYP2C19 inhibitor Yes / No - 

CYP2D6 substrate/inhibitor Yes / No - 

E
x

cr
et

i

o
n

 

Total clearance (CLtot) log mL/min/kg Higher is better 

Renal OCT2 substrate Yes / No - 
 

3. Results and discussion  

Design strategy 

This study presents an approach to the repositioning of isoniazid 

by introducing structural modifications at the terminal at the 

terminal NH2 group. The strategy involves hybridizing isoniazid 

with various aromatic or heteroaromatic aldehydes,leading to 

the formation of a new functional group known as an imine. The 

selection of aromatic aldehydes as hybridization partners was 

motivated by their structural features. Compared to chains, 

aromatic aldehydes exhibit fewer degrees of freedom, which can 

contribute to enhanced ligand-receptor binding energy by 

reducing the entropic penalty. This property can potentially lead 

to increased compound potency(Mushtaque & Rizvi, 2023; 

Rohilla et al., 2024). 

 

The designed compounds possess several key features: 

1) Nucleophilic imine and reactive nitrogen: The imine group 

and the nitrogen in the pyridine ring offer nucleophilic sites 

for potential interactions with biological targets. 

2) Electrophilic and nucleophilic character of the imine 

carbon: The imine carbon's dual reactivity can facilitate 

interactions with both electron-rich and electron-deficient 

groups. 

3) Tautomerism potential: A carbonyl group adjacent to the -

NH- group in hydrazine allows for the possibility of 

tautomerism in certain cases. 

4) Intramolecular and intermolecular interactions: The relative 

positioning of the NH group to the -C=N group can 

influence the propensity for intramolecular and 

intermolecular interactions, potentially enhancing binding 

to biological targets. 

5) Smaller molecular weight: The reduced molecular weight 

of these derivatives compared to isoniazid may facilitate 

intracellular penetration, mimic endogenous substrates, and 

increase the likelihood of interactions with various targets. 

 

The structural modifications introduced in these compounds are 

expected to significantly influence their physicochemical 

properties, including lipophilicity, electronic characteristics, 

and steric effects. These alterations may, in turn, lead to changes 

in biological activity and therapeutic potential. Ultimately, the 

goal of these modifications is to improve the compounds' 

efficacy, particularly for applications as DNA-binding agents. 

 

Physiochemical and drug-likeness properties predictions 

Prediction of the physicochemical properties of drugcandidates 

is essential for efficient drug development and understanding 

their biological and medicinal actions(Leeson & Young, 2015; 

Meanwell, 2011).  Properties such as molecular weight, the 

number of rotatable bonds, and the number of heavy atoms are 

integral to evaluating drug-likeness, helping identify oral drug 

candidates in the early phases of drug discovery(Lee et al., 

2022a; Tripathi &Ayyannan, 2018).Drug-like compounds are 

molecules that contain functional groups and/or have physical 

properties consistent with the majority of known drugs, 

suggesting that these compounds could potentially exhibit 

biological activity or therapeutic effects. The drug-like 

characteristics serve as a parameter in choosing a more 

promising compound as a lead from the extensive combinatorial 

libraries(Lee et al., 2022b; Tian et al., 2015). 
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One of the foundational methods for assessing drug-like 

properties is Lipinski’s Rule of Five (Ro5), developed by 

Pfizer's medicinal chemist, Christopher Lipinski. The RO5 was 

derived from an analysis of orally available drugs and clinical 

candidates, though it excludes certain classes such as antibiotics, 

antifungals, vitamins, and cardiac glycosides. The RO5 states 

that a compound is more likely to be membrane permeable and 

easily absorbed via passive diffusion in human intestine if it 

meets the following criteria: molecular weight (MW) <500, The 

number of hydrogen bond donors (HBDs) <5 (counting the sum 

of all NH and OH groups), partition coefficient octanol/water 

Log P < 5, The number of hydrogen bond acceptors (HBAs) <10 

(counting all N and O atoms). The thresholds in the rule are 

multiples of five, hence the name "Rule of Five"(Lipinski, 2004; 

Lipinski et al., 2001).Veber et al. (2002) expanded upon the Ro5 

by identifying two additional descriptors crucial for optimal oral 

bioavailability in rats: the number of rotatable bonds (NBR) < 

10 and polar surface area (PSA) < 140 Å²(Veber et al., 2002).  
 

According to the literature, if a compound violates two or more 

of the Ro5 properties, it is likely to be classified as non-drug-

like or suitable for non-oral delivery routes(Lipinski et al., 2001; 

Sampat et al., 2022). Lipinski’s Rule aids in filtering out 

compounds that are less likely to be of interest in ongoing 

research(Roman et al., 2023). 

 

Molinspiration web-based software plays a pivotal role in 

evaluating physicochemical properties and drug-likeness. This 

tool leverages advanced Bayesian statistical methods, 

integrating the structural and property data of both active and 

inactive compounds to identify substructural features 

characteristic of biologically active molecules. The software 

calculates key physicochemical parameters crucial for 

predicting the theoretical oral bioavailability of the compounds 

under investigation. These parameters include molecular 

weight, partition coefficient (logP), the number of hydrogen 

bond acceptors and donors, the number of rotatable bonds, and 

total polar surface area, as outlined in Table 4A. 
 

Number of heavy atoms (N atoms): 

The number of heavy atoms in a molecule is a key factor in drug 

design, influencing molecular size, complexity, drug-likeness, 

and pharmacokinetic properties(García-Sosa et al., 2012). While 

larger molecules offer increased binding potential, they may 

also pose challenges related to synthesis, solubility, and 

membrane permeability. During lead optimization, reducing the 

number of heavy atoms can lower molecular weight and 

improve solubility, enhancing the drug-likeness profile without 

significantly affecting potency(de Souza Neto et al., 2020; 

Wang et al., 2019). Isoniazid derivatives contain between 16 and 

24 heavy atoms, with INH having the lowest count at 10 atoms. 

The increase in heavy atoms in derivatives is often due to the 

substitution of larger aromatic rings or additional functional 

groups, such as in INH14, which has the highest count due to 

the inclusion of a naphthalene ring and a dimethylamino group. 
 

Molecular weight (MW): 

Molecular weightis the sum of the atomic weights of all atoms 

in a molecule, typically expressed in Daltons (Da) or grams per 

mole (g/mol). MW is a critical determinant of a drug’s 

absorption, distribution, metabolism, and excretion (ADME) 

profile(Komura et al., 2023). As MW increases, drug 

permeability and absorption generally decrease, particularly 

concerning membrane permeability and penetration through the 

blood-brain barrier (BBB)(Pardridge, 2012). Additionally, drug 

clearance through artificial membranes inversely correlates with 

MW(Lienx& Wang, 1980). The MW values of the designed 

compounds range from 215.21 to 318.38 Da, all of which are 

under the 500 Da threshold, suggesting that these molecules are 

likely to be easily absorbed and exhibit good permeability across 

cell membranes. 

 

Partition coefficient (LogP): 

The partition coefficient is a key measure of lipophilicity or 

hydrophobicity, calculated as the logarithm of the concentration 

ratio of a compound between organic (usually n-octanol) and 

aqueous phases(Ruiz-Garcia et al., 2008). Positive values of the 

partition coefficient suggest a tendency towards a lipophilic or 

hydrophobic environment,whereas negative values indicate a 

preference for a lipophobic or hydrophilic environment(Khanna 

& Ranganathan, 2009). LogP values significantly impact 

various ADMET parameters, drug-receptor interactions, and the 

overall potency of molecules(Tshepelevitsh et al., 2020). 

Compounds exhibiting extremely high or low LogP values may 

encounter challenges related to permeability and 

solubility(Waring, 2010). Highly hydrophilic compounds 

generally struggle to diffuse passively through cellular 

membranes due to their inability to penetrate the hydrophobic 

core of the lipid bilayer. Conversely, excessively lipophilic 

compounds may also face difficulties in membrane permeation, 

as they tend to become sequestered within the bilayer, impeding 

their effective transit(Lagorce et al., 2017).Researchers have 

also identified a correlation between a compound's logP value 

and its ability to penetrate the blood-brain barrier (BBB), a 

crucial factor for central nervous system (CNS) activity. For 

CNS-active drugs, a logP value in the range of 4 to 5 is generally 

considered optimal(Abraham et al., 1993; Feher et al., 2000). 

The LogP values for the designed compounds (INH01–INH19) 

were within the acceptable range per Lipinski’s Rule and 

showed superior lipophilicity compared to the precursor 

compound, isoniazid (INH), which had a negative LogP value. 

This enhancement in lipophilicity, likely attributed to the 

presence of the Imine group and aromatic portion of the 

aldehyde, suggests enhanced absorption through biological 

membranes. 
 

Hydrogen bond acceptor and hydrogen bond donor groups: 

Hydrogen bonds play a crucial role in molecular 

recognition(Morozov &Kortemme, 2005; Santos-Martins & 

Forli, 2020), structural stability(Pace et al., 2011), enzyme 

catalysis(Calixto et al., 2019; Neves et al., 2017), and drug 

partition and permeability(Rezai et al., 2006; Shinoda, 2016). 

The presence of functional groups capable of forming hydrogen 

bonds can enhance a drug's solubility and its ability to interact 

with biomolecular targets, thereby influencing binding affinity 

and selectivity. However, an excess of hydrogen bond donors or 

acceptors can negatively impact membrane permeability and 

partitioning(Alex et al., 2011). In that regard, drug-like character 

predictors, such as Lipinski's rule of five (Ro5) have been using 

the number of hydrogen bond donors/acceptors as a molecular 

descriptor. In the designed compounds, the number of HBAs 

ranges from 4 to 8, and the number of HBDs ranges from 1 to 2, 

all within the limits set by the Ro5, ensuring that the hydrogen 

bonding potential does not compromise the compounds' drug-

like properties. 
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The number of rotatable bonds (N rotb):  

The number of rotatable bonds is a measure of molecular 

flexibility and is an important descriptor for predicting oral 

bioavailability.  A rotatable bond is defined as any single bond 

not part of a ring and bound to a non-terminal heavy atom(Veber 

et al., 2002). A higher number of rotatable bonds increases 

molecular flexibility, potentially improving binding affinity 

with target proteins. However, compounds with fewer rotatable 

bonds are generally more rigid, which can enhance oral 

bioavailability by reducing the entropy cost of binding(Vieth et 

al., 2004). In the designed compounds, the number of rotatable 

bonds does not exceed 10, which is favorable for maintaining 

good oral bioavailability. 
 

Topological polar surface area (TPSA):   

Topological polar surface area is a key descriptor related to 

hydrogen bonding and is important for drug transport properties 

such as intestinal absorption, BBB penetration, and oral 

bioavailability(Leeson, 2016; Veber et al., 2002). TPSA is 

calculated as the sum of the surface areas of polar atoms, 

primarily oxygen, and nitrogen, including attached 

hydrogens(Ertl et al., 2000). Therefore, TPSA is a reliable 

indicator of a compound's hydrogen bonding capacity. 

Compounds with a TPSA below 140 Å² typically exhibit good 

permeability and oral absorption, while those with a TPSA 

below 80 Å² are more likely to permeate the CNS by passive 

diffusion(Clark, 2011). The TPSA values for the isoniazid 

derivatives range from 54.59 to 109.14 Å², well below the 140 

Å² threshold, suggesting favorable absorption characteristics. 
 

Molecular volume (Å3): 

Molecular volume, a fundamental property of a molecule, plays 

a pivotal role in drug discovery. Its significance extends to 

optimizing drug candidates, understanding interactions with 

biological targets, and predicting pharmacokinetic 

properties(Flatow et al., 2014). By determining the molecular 

volume of a compound, researchers can gain insights into its 

binding affinity, solubility, permeability, and overall drug-

likeness(La-Scalea et al., 2005; Mcgowan, 1956). In the context 

of isoniazid derivatives, molecular volume variations offer 

valuable information. The range of molecular volumes observed 

in these derivatives, from 187.51 Å³ to 295.84 Å³, highlights the 

influence of structural modifications on the overall molecular 

size and shape. This understanding can inform the design of 

novel derivatives with improved properties. 
 

Bioactivity predictions 

In drug discovery, predicting the bioactivity of compounds 

against specific biological targets is crucial for understanding 

their potential therapeutic effects and toxicity profiles. 

Biological targets, which commonly include proteins, whether 

cytosolic, or membrane-embedded, and nucleic acids, play a key 

role in mediating the biological activity of drugs(Decherchi& 

Cavalli, 2020). 
 

To assess the likelihood of compounds interacting with these 

targets, bioactivity scores can be calculated using tools like 

Molinspiration, an open-source chemoinformatics platform. 

These scores provide valuable insights into compounds' binding 

affinity and selectivity, facilitating the development of new 

drugs with enhanced efficacy and reduced side effects. 

Bioactivity scores are categorized as follows: compounds with 

scores greater than 0.0 are likely to exhibit significant biological 

activity, scores between -0.50 and 0.00 suggest moderate 

activity, and scores below -0.50 indicate inactivity(Khan et al., 

2017). 
 

Table 4B suggests the compounds exhibit moderate to inactive 

interactions with six protein targets. The efficiency of 

bioactivity scores typically follows the order of Enzyme 

Inhibitors (EI), Kinase Inhibitors (KI), G-protein-coupled 

receptors (GPCR), Protease Inhibitors (PI), Nuclear Receptors 

(NRC), and Ion Channel Modulators (ICM).  
 

The bioactivity profiles of isoniazid derivatives (INH01 to 

INH19) vary significantly depending on the structural 

modifications made to the pyridine-4-carbohydrazide core. For 

instance, the parent compound, isoniazid, shows relatively low 

bioactivity scores across all six targets, particularly in the 

categories of Nuclear Receptors (NRC: -2.33) and Ion Channel 

Modulators (ICM: -1.45). This suggests a low predicted affinity 

for these targets, consistent with isoniazid's primary role as an 

antibiotic rather than a modulator of these pathways. 
 

Derivatives such as INH01 (Phenylmethylidene) exhibit 

moderate activity across all targets, indicating that simple 

phenyl substitution does not dramatically alter activity 

compared to the parent compound. In contrast, derivatives like 

INH13 (Furan-2-yl) and INH16 (Thiophen-2-yl), which feature 

heterocyclic aromatic rings, display the lowest activity scores, 

implying that these substitutions may lead to reduced 

bioactivity. The presence of sulfur in the thiophene ring of 

INH16 could contribute to an electron-rich environment that is 

less favorable for target interactions. 
 

Compounds with strong electron-withdrawing groups, such as 

INH03 (3-Nitrophenyl) and INH17 (2-Nitrophenyl), show 

decreased bioactivity across all targets, particularly for ICM and 

NRC. This suggests that the electron-withdrawing nature of the 

nitro group reduces binding affinity. Conversely, electron-

donating groups like methoxy and hydroxy in derivatives such 

as INH05 (4-Hydroxy-3-methoxyphenyl) and INH11 (2-

Hydroxy-5-methoxyphenyl) slightly improve bioactivity, 

possibly by enhancing electronic interactions with certain 

targets. 
 

Derivatives with dimethylamino groups, such as INH07 (4-

Dimethylaminobenzylidene) and INH14 (4-

(Dimethylamino)naphthalen-1-yl), show moderate activity, 

indicating that electron-donating groups can enhance 

bioactivity, though the overall effect also depends on the 

position and presence of additional substituents. Meanwhile, 

bulky naphthalene-containing derivatives like INH09 (2-

Hydroxynaphthalen-1-yl) and INH19 (Naphthalen-2-yl) 

generally exhibit low bioactivity, likely due to increased steric 

hindrance that reduces effective target binding. Lastly, INH18 

((Z)-3-phenylprop-2-enylidene) shows moderate bioactivity, 

suggesting that some flexibility in molecular structure can 

slightly improve target binding, though not significantly. 
 

PASS prediction 

The Prediction of Activity Spectra for Substances (PASS) 

platform provides a robust computational approach for 

forecasting the biological activity spectra of chemical 

compounds. Developed by the V. N. Orechovich Institute of 

Biomedical Chemistry, PASS predicts pharmacological effects 

based on structural similarities to known biologically active 

compounds. This model relies on a vast dataset, primarily 

derived from the MDL Drug Data Report (MDDR), and  
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continuously updated to reflect discoveries in medicinal 

chemistry(Parasuraman, 2011). 
 

The interpretation of PASS predictions requires a degree of 

flexibility, particularly concerning the values of Pa. A Pa value 

greater than 0.7 indicates a strong probability that the predicted 

biological activity can be experimentally confirmed. This 

suggests that the compound shares significant structural 

similarities with known pharmacologically active agents, 

making it a promising candidate for experimental validation. For 

Pa values between 0.5 and 0.7, the probability of experimental 

confirmation is lower. However, such compounds may exhibit 

novel structural features that are not closely aligned with known 

drugs. These novel features could offer valuable insights into 

unique or less common mechanisms of action. In contrast, a P 

value below 0.5 suggests a relatively low probability of 

experimental validation. Nonetheless, compounds with low Pa 

values may still exhibit structural novelty, presenting 

opportunities for discovery in previously unexplored areas of 

biological activity(Filimonov et al., 2014). 

 

Table 5 presents the PASS predictions for a series of pyridine-

4-carbohydrazide derivatives (INH01–INH19), focusing on the 

most promising activities where Pa > 0.7. These predictions aim 

to understand the potential therapeutic applications of these 

compounds, with isoniazid (INH) serving as the template 

compound.Based on the data, each compound has multiple 

potential activities, we can classify the activities into several 

categories: 

 

Core Activities: These activities appear consistently across 

multiple INH compounds and likely represent the primary 

mechanisms of action: antituberculosis, antimycobacterial, 

taurine dehydrogenase inhibitor, and amine dehydrogenase 

inhibitor. 

 

Secondary Activities: These are activities that appear in 

multiple INH compounds but with less frequency or probability 

than the core activities.HMGCS2 expression enhancer 

(cholesterol metabolism), phosphatidylserine decarboxylase 

inhibitor (cell signaling), glutamine-phenylpyruvate 

transaminase inhibitor (amino acid metabolism), antiviral 

(picornavirus and poxvirus), beta-adrenergic receptor kinase 

inhibitor (hormonal signaling). 

 

Tertiary Activities: These are less common and often have 

lower probabilities. Threonine aldolase inhibitor, isopenicillin-

N epimerase inhibitor, nicotinamidase inhibitor, PFA-M1 

aminopeptidase inhibitor, MCL-1 antagonist,nicotinic 

alpha6beta3beta4alpha5 receptor antagonist,  corticosteroid 

side-chain-isomerase inhibitor,  phenylalanine(histidine) 

transaminase inhibitor,  CYP2A8 substrate,  gluconate 2-

dehydrogenase (acceptor) inhibitor,  cytoprotectant,  

transcription factor stat3 inhibitor, arylalkyl acylamidase 

inhibitor, aldehyde dehydrogenase (pyrroloquinoline-quinone) 

inhibitor, thiol protease inhibitor, neuropeptide y2 antagonist, 

aspartate-phenylpyruvate transaminase inhibitor,phthalate 4,5-

dioxygenase inhibitor,  glycosylphosphatidylinositol 

phospholipase D inhibitor. 

 

Additionally, the analysis of predicted activities across the INH 

derivatives reveals some interesting structure-activity 

relationships (SARs). Antibacterial activity, a primary focus due 

to INH’s established efficacy against Mycobacterium 

tuberculosis and Gram-positive bacteria, showed that many 

derivatives had comparable or even superior potency to INH. 

Structural modifications appear to enhance antibacterial 

potency, especially with para-substitution on the phenyl ring, 

which was particularly effective for antimycobacterial activity. 

Derivatives such as INH04, INH07, INH08, INH12, and INH15 

exhibited higher activity with para-substituted phenyl groups. 

Electron-donating groups (e.g., -OCH3, -N(CH3)2) further 

improved activity, as seen in INH07, INH08, and INH14, while 

electron-withdrawing groups (e.g., -NO2, -Cl) also boosted 

potency, as observed in INH03 and INH12. Compounds 

containing furan (INH13) or thiophene (INH16) substituents 

showed strong antibacterial activity, particularly against 

tuberculosis. In contrast, ortho- or meta-substitution (INH02, 

INH05, INH06, INH11) tended to reduce activity compared to 

para-substituted compounds. Naphthyl substitutions at the 1- or 

2-position (INH09, INH14, INH19) did not significantly 

enhance activity over phenyl derivatives, and the lack of activity 

in INH14 suggests that bulkier groups may interfere with key 

binding interactions.  

 

Regarding antiviral activity, isoniazid itself demonstrated no 

potential across viral targets. However, many derivatives 

exhibited enhanced antiviral properties, underscoring the 

importance of structural modifications. Derivatives such as 

INH01, INH03, INH04, INH07, INH08, INH10, INH12, 

INH15, INH17, and INH19 displayed notable antiviral activity, 

with INH01, INH07, INH08, INH12, and INH15 showing 

efficacy against Picornavirus (PV) and Poxvirus (POV). Similar 

to the antibacterial SARs, para-substitution on the phenyl ring 

was again favored for antiviral activity. Electron-donating 

groups (e.g., -OCH3, -N(CH3)2) boosted activity in compounds 

like INH07, INH08, and INH14, while electron-withdrawing 

groups (e.g., -NO2, -Cl) enhanced activity in INH03 and INH12. 

Furan (INH13) and thiophene (INH16) substituents showed 

little antiviral activity, while ortho- or meta-substituted phenyl 

groups (INH02, INH05, INH06, INH11) performed less 

effectively. Naphthyl substituents (INH09, INH14, INH19) 

were not advantageous compared to phenyl groups. INH04, 

INH07, INH08, INH12, and INH15 emerge as promising 

candidates for further investigation, warranting in vitro and in 

vivo studies to confirm their antiviral efficacy and safety. 

 

In contrast, INH demonstrated no predicted activity as an 

enhancer of HMGCS2 expression, a key enzyme in lipid 

metabolism. However, many derivatives showed increased 

activity in this area, indicating that structural modifications 

improved the HMGCS2 expression-enhancing properties. Para-

substitution on the phenyl ring was again advantageous for 

enhancing HMGCS2 expression. Compounds such as INH04, 

INH07, INH08, INH12, and INH15 showed heightened activity, 

with electron-donating groups (e.g., -OCH3, -N(CH3)2) further 

enhancing efficacy, as in INH07, INH08, and INH14. Electron-

withdrawing groups (e.g., -NO2, -Cl) also proved beneficial, as 

seen in INH03 and INH12. INH13, containing a furan 

substituent, exhibited the highest activity for HMGCS2 

expression enhancement, underscoring the importance of this 

group. As with antibacterial and antiviral activities, ortho- and 

meta-substitutions (INH02, INH05, INH06, INH11) resulted in 

reduced activity, while naphthyl substituents (INH09, INH14, 

INH19) did not significantly improve activity over phenyl 

groups. Derivatives INH02, INH10, INH12, and INH13 are 

particularly promising for further exploration in metabolic or 

transcriptional pathways regulated by HMGCS2. 
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ADME prediction 

As opposed to pharmacodynamics, which describes what the 

drug does to the body. Pharmacokinetics (PK) describes what 

the body does to the drug(Currie, 2018a). There are four major 

determinants of PK, commonly called ADME 

properties(absorption, distribution, metabolism, and excretion). 

These properties are crucial for determining the drug's efficacy 

and safety(Lucas et al., 2019). 
 

The ADME process can be broadly summarized as (i) drug 

dissolution in the gastrointestinal tract, followed by absorption 

through the gut wall and passage into the bloodstream via the 

liver; (ii) distribution of the drug to various tissues, depending 

on its structural and physicochemical properties; (iii) 

metabolism, where the drug is biochemically modified into 

metabolites, often by enzymatic systems, and (iv) elimination of 

the drug, usually through excretion (Gleeson et al., 2011; van de 

Waterbeemd& Gifford, 2003). For a compound to be effective 

it must reach its target in the body at sufficient concentrations 

and remain in a bioactive form long enough to exert its intended 

biological effects. Thus, understanding ADME properties early 

in drug development can help minimize the time, cost, and labor 

involved by focusing on compounds with promising profiles. 

This section evaluates the absorption, distribution, metabolism, 

and excretion characteristics of pyridine-4-carbohydrazide 

derivatives (INH01–INH19), comparing them to the parent 

compound isoniazid (INH).  
 

(A) Absorption  

Absorption refers to the process by which a drug moves from 

the site of administration into systemic circulation(Currie, 

2018b). Several parameters are used to evaluate the absorption 

potential of drug candidates: water solubility (LogS), human 

intestinal absorption (HIA), permeability across the Caco-2 cell 

line (LogPapp), skin permeability (LogKp), and their 

interactions with P-glycoprotein (P-gp I, II). These factors 

influence the bioavailability of a compound, especially when 

administered orally. The results of these parameters are 

summarized in Table 6A. 
 

Water solubility (logS):Water solubility is critical for drug 

formulation and absorption, particularly for oral 

delivery(Barrett et al., 2022;Delaney, 2004). Low solubility can 

lead to poor bioavailability and impaired absorption, while high 

solubility can enhance drug dissolution and plasma 

concentration(Tran et al., 2023). The aqueous solubility of a 

substance is often expressed as log units of molar solubility 

(mol/L), or logS. The pyridine-4-carbohydrazide derivatives 

exhibit varying degrees of water solubility, ranging from -

1.8896 to -4.042. Negative values reflect lower solubility. For 

example, INH01 (-2.076) and INH02 (-2.894) exhibit better 

solubility than isoniazid (-1.6), possibly due to simpler aromatic 

substitutions like phenyl (INH01) or hydroxyl groups (INH02), 

which slightly decrease solubility without significantly 

impairing absorption. On the other hand, derivatives like INH10 

(-4.02), INH14 (-4.042), and INH17 (-3.643) show poor 

solubility, likely because of bulky or electron-withdrawing 

groups, such as nitro or naphthyl rings, which hinder aqueous 

solubility. These low solubility values suggest that these 

derivatives may struggle with absorption, particularly in 

aqueous environments. 
 

Human intestinal absorption (HIA):HIA reflects how well a 

compound is absorbed through the intestinal lining(Azman et 

al., 2022), and a value over 80% is considered indicative of good 

absorption(Chander et al., 2017; Pires et al., 2015). The HIA 

values for the pyridine-4-carbohydrazide derivatives range from 

83.21% to 96.43%, indicating that all compounds have good 

predicted absorption and are favorable for oral bioavailability. 

INH05 (96.317%) and INH14 (96.436%) show the highest 

absorption rates, suggesting that their methoxy-hydroxyphenyl 

and dimethylamino-naphthyl groups, respectively, enhance 

lipophilicity and passive diffusion through cell membranes. 

Conversely, INH10 (83.223%) and INH03 (85.889%) 

demonstrate lower absorption due to the presence of nitro 

groups, which tend to reduce membrane permeability. Isoniazid 

itself shows a lower HIA value (75.651%), likely due to its 

simple structure and lack of lipophilic substituents that facilitate 

passive absorption. 
 

The Caco-2 cell line (Caco-2):The Caco-2 cell line is often 

used as a model for intestinal permeability(Kus et al., 2023). 

Compounds with a LogPapp value greater than 0.90 cm/s are 

considered to have high permeability(Pires et al., 2015). The 

pyridine-4-carbohydrazide derivatives show varying 

permeability values, ranging from -0.1 to 1.386. Compounds 

such as INH04, INH06, INH07, and INH09 exhibit high 

permeability, while others, including INH02, INH03, INH10, 

INH12, INH13, INH14, and INH17, show lower permeability. 

The reduced permeability of these compounds may be attributed 

to the presence of polar, bulky, or electron-withdrawing groups, 

which can impede passive diffusion across intestinal 

membranes. 
 

Skin permeability (LogKp):Skin permeability reflects the 

ability of a drug to penetrate the skin barrier, a critical factor for 

transdermal drug delivery systems(Cordery et al., 2017; 

Pensado et al., 2022; Tsakovska et al., 2017). Compounds with 

a LogKp value greater than -2.5 cm/h are considered to have 

relatively low skin permeability(Pires et al., 2015). The LogKp 

values of the pyridine-4-carbohydrazide derivatives range from 

-3.29 to -2.398, suggesting limited potential for transdermal 

absorption in most compounds. However, INH18, with a LogKp 

value of -2.398, exhibits the highest skin permeability among 

the derivatives, indicating that this compound may have 

potential for transdermal drug delivery. 
 

Permeability glycoprotein (P-gp) interaction:P-gp is a 

membrane-bound efflux transporter that can limit the 

bioavailability of drugs by actively pumping them out of cells, 

particularly in tissues such as the intestines, liver, and 

brain(Saaby & Brodin, 2017). Compounds that are substrates for 

P-gp may face reduced bioavailability, as the transporter pumps 

them out of cells before they can reach therapeutic 

concentrations(Elmeliegy et al., 2020; Nielsen et al., 2023). 

Moreover, P-gp substrates can be further categorized into drugs 

that are not metabolized in humans and those that are substrates 

for both P-gp and drug-metabolizing enzymes, particularly 

CYP3A4. Given that many P-gp substrates are also metabolized 

by CYP3A4, and that P-gp inhibitors often inhibit CYP3A4 as 

well, numerous drug-drug interactions arise from the inhibition 

or induction of both P-gp and CYP3A4(Fromm, 2004; König et 

al., 2013). Several compounds in the study, including INH03, 

INH07, INH08, INH09, and INH12, are predicted to be 

substrates for P-gp, suggesting they may face reduced 

bioavailability due to efflux and possible metabolism by 

CYP3A4. In contrast, isoniazid and the other derivatives are not 

expected to interact with P-gp, which may result in better 

bioavailability by avoiding efflux. 
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Additionally, most compounds are not predicted to inhibit P-gp, 

except for INH14, which inhibits both P-gp I and II. This 

inhibition could enhance bioavailability by preventing the efflux 

of co-administered drugs, making INH14 a potential candidate 

for combination therapies aimed at overcoming multidrug 

resistance, particularly in cancer treatments(Côrte-Real et al., 

2019; Dong et al., 2020; Waghray & Zhang, 2018). 
 

(D) Distribution  

Drug distribution refers to the reversible transfer of a drug 

within the body, from the bloodstream to various 

tissues(Berellini et al., 2009; Motl et al., 2006). It plays a crucial 

role in the ADMET process, as it influences the amount of drug 

that reaches target sites, affecting both efficacy and potential 

toxicity(Sun et al., 2022). The distribution properties of 

derivatives are evaluated using four key parameters: volume of 

distribution, fraction unbound, blood-brain barrier permeability, 

and central nervous system permeability, as shown in Table 6B.  
 

The Volume of Distribution (VDss) quantifies how 

extensively a drug disperses into body tissues relative to the 

bloodstream. Higher VDss values (closer to positive) indicate a 

greater extent of tissue distribution(Hsu et al., 2021). According 

to Pires et al., a compound is considered to have good tissue 

distribution if its VDss value exceeds 2.81 L/kg (log VDss> 

0.45) and poor distribution if it is below 0.71 L/kg (log VDss< -

0.15)(Pires et al., 2015). The VDss values for the derivatives 

range from -0.432 to 0.212 Log L/kg, suggesting low to 

moderate tissue distribution. Notably, compounds such as 

INH02, INH07, INH08, INH09, INH14, INH15, and INH19 

exhibit moderate tissue distribution, likely due to their aromatic 

structures, which enhance lipophilicity compared to isoniazid 

and other derivatives. 
 

Fraction Unbound (FU) represents the proportion of a drug in 

the plasma that remains unbound to proteins, with only the 

unbound fraction being pharmacologically active(Seyfinejad et 

al., 2021). A higher FU indicates a greater portion of the drug 

available to exert therapeutic effects(Watanabe et al., 2018). The 

FU values for the derivatives range from 0.031 to 0.333, with 

lower FU values corresponding to higher protein binding. 

Compounds such as INH14, INH19, and INH09, which contain 

extensive aromatic substituents, and INH03, INH10, and 

INH17, which contain nitro groups, show lower FU values. In 

contrast, isoniazid demonstrates the highest FU (0.728), 

significantly greater than most derivatives, reflecting minimal 

protein binding and suggesting a higher bioavailability for 

interaction with target sites. 
 

Blood-Brain Barrier (BBB) Permeability indicates a drug’s 

ability to cross the BBB, a selective barrier that regulates the 

entry of substances into the brain (Crivori et al., 2000). 

Compounds with a LogBB> 0.3 are considered capable of 

crossing the BBB easily, while those with a LogBB< -1.0 face 

significant barriers(Pires et al., 2015). Most pyridine-4-

carbohydrazide derivatives demonstrate low BBB permeability, 

suggesting limited brain penetration. However, compounds 

INH15 and INH18 exhibit higher BBB permeability, indicating 

their potential for greater brain access. 
 

CNS Permeability (Log PS) further evaluates the ability of 

these compounds to penetrate the central nervous system. 

Compounds with a Log PS > -2 are considered capable of CNS 

penetration, while those with a Log PS < -3 are unlikely to cross 

the CNS barrier(Pires et al., 2015). For the derivatives studied, 

only INH19 exhibits a Log PS lower than -2, suggesting it has 

poor CNS penetration. The remaining derivatives exhibit 

moderate CNS permeability (Log PS between -2 and -3). 

Isoniazid, with a Log PS of -3.022, shows one of the lowest CNS 

permeabilities, indicating it is less likely to penetrate the CNS 

effectively, which aligns with its hydrophilic structure. 
 

(M) Metabolism 

Drug metabolism is the process by which the body's enzymes 

chemically modify drug molecules. This is a vital defense 

mechanism against potential toxins, which are often lipid-

soluble and can accumulate in the body. To facilitate excretion, 

these toxins are converted into more water-soluble 

metabolites.Most drug metabolism occurs in the liver, where 

enzymes called hepatic microsomal enzymes catalyze the 

breakdown process.The metabolic properties of pyridine-4-

carbohydrazide derivatives were assessed by evaluating their 

potential as substrates and/or inhibitors of key cytochrome P450 

(CYP) enzymes, which are essential detoxifying enzymes 

predominantly expressed in the liver(Zanger & Schwab, 2013). 

To date, 57 distinct CYP isoforms have been identified in 

humans, of which five—CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A4—play pivotal roles in drug 

metabolism(Wei et al., 2024). The metabolic pharmacokinetic 

characteristics of the compounds are presented in Table 6C.  
 

Among these isoforms, CYP3A4 and CYP2D6 are of particular 

clinical importance due to their significant involvement in the 

metabolism of various drugs. Inhibition of these enzymes can 

result in reduced drug clearance, elevated drug plasma 

concentrations, and potential adverse reactions. Conversely, if a 

compound serves as a substrate for these enzymes, it is likely to 

be efficiently metabolized, reducing the risk of side effects 

related to drug accumulation.Several pyridine-4-carbohydrazide 

derivatives, including INH01, INH03, INH04, INH07, INH08, 

and INH10, are identified as substrates for CYP3A4, indicating 

their likelihood of efficient metabolic processing by this 

enzyme, thereby reducing the risk of accumulation-related side 

effects. Furthermore, most derivatives exhibit no significant 

inhibition of CYP2D6, CYP2E1 and CYP3A4, which is 

advantageous, as it suggests a lower potential for drug-drug 

interactions and reduced risk of hepatotoxicity. Notably, INH18 

acts as a dual substrate for both CYP3A4 and CYP2D6, further 

lowering the probability of metabolic interactions. 
 

Regarding CYP1A2, all derivatives except INH06 inhibit this 

isoform, potentially resulting in elevated plasma concentrations 

of co-administered drugs metabolized by CYP1A2 and 

increasing the risk of drug-drug interactions. The inhibition of 

CYP1A2 may be linked to the presence of electron-withdrawing 

substituents, such as nitro and halogen groups, on the aromatic 

rings of these compounds, which likely facilitate interaction 

with the enzyme's active site. 
 

About CYP2C8, most derivatives inhibit this enzyme, with the 

exceptions of INH07, INH12, INH13, INH15 and INH16, which 

do not exhibit inhibitory activity. The inhibition observed in 

other derivatives may be attributed to structural features, such as 

bulky substituents, which could impede the enzyme's binding 

affinity. For CYP2C9, only INH14 shows inhibitory activity, 

which may be ascribed to the presence of a 

dimethylaminonaphthyl group that interacts with the active site 

of CYP2C9. 
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Several derivatives also exhibit inhibition of CYP2C19, 

including INH04, INH09, INH10, INH14, INH18, and INH19. 

Structural elements such as nitro groups in INH09 and INH10, 

and naphthyl groups in INH14 and INH19, likely contribute to 

this inhibitory activity by introducing steric and electronic 

effects that influence binding to the CYP2C19 active site. 
 

(E) Excretion 

Excretion refers to the process by which drugs are eliminated 

from the body, and it is closely related to the concentration of 

the drug in the bloodstream and the rate of elimination(Talevi& 

Bellera, 2018). In this study, the excretion properties of 

pyridine-4-carbohydrazide derivatives (INH01–INH19) were 

evaluated based on their total clearance (CLtot) values, expressed 

in Log ml/min/kg, and their potential interaction with the Renal 

Organic Cation Transporter 2 (OCT2), as presented in Table 6D. 
 

The total clearance (CLtot) values for the derivatives ranged from 

0.027 to 0.966 Log ml/min/kg. Isoniazid, the reference 

compound, exhibited a moderate clearance rate (Log CLtot = 

0.782). Several derivatives showed clearance values close to 

this, suggesting that, despite structural modifications, the 

pyridine-4-carbohydrazide core structure contributes to a 

baseline level of metabolic stability. Derivatives with higher 

clearance rates (Log CLtot> 0.800), represented in Tuscan color, 

include INH05, INH06, INH10, INH11, INH14, and INH18. 

These compounds are cleared more rapidly from the body, 

indicating potentially shorter half-lives and a possible need for 

more frequent dosing. Structural features such as electron-

withdrawing groups (e.g., nitro groups in INH10 and INH11) or 

bulky aromatic substituents (e.g., the naphthyl group in INH14) 

likely enhance the compounds' interaction with metabolic 

enzymes, leading to increased clearance. 
 

In contrast, compounds INH01, INH02, INH03, INH07, INH08, 

INH09, INH12, INH13, INH15, INH17, INH19, and isoniazid 

exhibit moderate clearance rates (Log CLtot ~ 0.700–0.800), 

indicated in green color. These derivatives typically feature less 

complex aromatic substitutions, which may reduce metabolic 

enzyme interactions, resulting in slower clearance rates. 

Compounds with moderate clearance rates are likely to remain 

in the body for a longer duration, which may enhance their 

ability to reach and maintain therapeutic levels at target sites. 
 

The lowest clearance rates (Log CLtot< 0.700), represented in 

gray color, were observed for INH04 and INH16. INH04 

contains a chlorine atom, while INH16 features a thiophene ring, 

both of which may reduce the compounds' susceptibility to 

metabolic breakdown and excretion, leading to lower clearance. 

Derivatives with low to moderate clearance may have extended 

half-lives, potentially increasing the risk of accumulation, but 

also offering the advantage of less frequent dosing. 
 

The role of OCT2 in renal clearance was also assessed. OCT2 is 

a key renal uptake transporter involved in the active secretion of 

drugs and endogenous compounds(Burckhardt & Wolff, 2000; 

Wright, 2019). Predicting whether a compound interacts with 

OCT2 is crucial for understanding its excretion pathway and 

potential contraindications(Lin et al., 2023). Based on 

pkCSMpredictions, none of the derivatives, including isoniazid, 

were identified as OCT2 substrates. This suggests that these 

compounds are unlikely to be actively transported via OCT2, 

reducing the likelihood of their involvement in renal 

secretion(Bicker et al., 2020). Consequently, their clearance is 

more likely to be mediated through hepatic rather than renal 

pathways. This finding implies that renal toxicity and drug-drug 

interactions associated with OCT2 inhibition are not a major 

concern for these derivatives.    

      

4. Conclusion 

In drug discovery, understanding and predicting the 

physicochemical properties of compounds is essential to 

optimize their pharmacokinetic profiles. The pyridine-4-

carbohydrazide derivatives examined in this study show a clear 

trend of improved physicochemical properties compared to the 

parent compound, isoniazid (INH). These enhancements are 

attributed to the structural modifications involving diverse 

aromatic substituents, resulting in derivatives with varied 

molecular weight, volume, hydrophobicity and hydrogen 

bonding capacity. Crucially, all examined compounds meet the 

criteria of Lipinski's Rule of Five and the Veber rule, suggesting 

they possess favorable drug-likeness characteristics, high 

permeability and biological availability. Despite their increased 

molecular complexity, these compounds maintain drug-likeness 

without violations, reinforcing their potential as drug 

candidates.  
 

The bioactivity scores of the derivatives demonstrate that 

structural modifications significantly influence predicted 

interactions with various biological targets. Unlike isoniazid, 

which exhibits limited bioactivity across a range of targets, 

derivatives with aromatic electron-donating groups showed 

improved bioactivity. On the other hand, the presence of 

electron-withdrawing groups tends to diminish the compounds' 

biological activity. This highlights the importance of careful 

structural modification to optimize bioactivity profiles, as the 

electronic properties of these groups directly impact target 

binding affinities.  
 

The PASS predictions for the pyridine-4-carbohydrazide 

derivatives provide key insights into the impact of structural 

modifications on their pharmacological potential. Compounds 

such as INH03, INH09, INH14 and INH19 show high predicted 

activity across various therapeutic categories, positioning them 

as strong candidates for further experimental investigation. 

These derivatives demonstrate potential in antibacterial, 

antiviral, antiprotozoal, anti-inflammatory and anticancer 

applications. The observed structural modifications create 

opportunities for the discovery of novel bioactive agents, 

offering promising avenues for the development of new 

therapeutic interventions across a range of medical fields. 
 

The pharmacokinetic profiles of the pyridine-4-carbohydrazide 

derivatives also highlight the influence of structural 

modifications on absorption, distribution, metabolism and 

excretion. Many of the derivatives show improved absorption 

and permeability profiles compared to isoniazid, particularly 

those with electron-withdrawing or hydrophobic substituents. 

However, some derivatives face challenges such as limited 

solubility or interactions with P-glycoprotein (P-gp), 

necessitating further optimization to overcome these absorption 

barriers. In terms of distribution, bulky and lipophilic 

derivatives exhibit greater tissue penetration and blood-brain 

barrier permeability, suggesting their potential utility in treating 

CNS-related conditions. However, these modifications may also 

increase the risk of CNS side effects, requiring a balanced 

approach to design. Metabolic profiling highlights the influence 

of specific substituents on interactions with cytochrome P450 

enzymes, with some derivatives, such as INH14, exhibiting  
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enhanced CYP450 inhibitory activity. This underscores the need 

to carefully consider structural modifications to minimize drug-

drug interaction risks. Excretion rates also vary, with derivatives 

showing different clearance values. Those with higher clearance 

rates may require more frequent dosing, while others with lower 

clearance could risk accumulation. The absence of renal OCT2 

interactions suggests hepatic clearance pathways, reducing the 

risk of renal toxicity. Overall, while these derivatives show 

promising pharmacological and pharmacokinetic profiles, 

further optimization and experimental validation will be 

essential to fully realize their therapeutic potential. 
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Table 4A: Physicochemical Properties and Drug-Likeness Scores for the Predicted Compounds. 
 

Codes 

N 

atom

s 

Lipinski's Rule Veber Rule N 

violations 

of rule  

of 5 

Volume 

(Å 3) MW  

(Da) 

mi 

logP 
N ON 

N 

OHNH 

N 

rotb 

TPSA 

 (Å 2) 

INH01 17 225.25 1.81 4 1 3 54.35 0 205.94 

INH02 18 241.25 1.75 5 2 3 74.58 0 213.94 

INH03 20 270.25 1.74 7 1 4 100.18 0 229.28 

INH04 18 259.70 2.26 4 1 3 54.35 0 219.48 

INH05 20 268.32 1.91 5 1 4 54.59 0 239.51 

INH06 21 255.28 1.87 5 1 4 54.59 0 256.31 

INH07 20 271.28 1.15 6 2 4 83.82 0 251.85 

INH08 19 285.30 1.15 6 2 5 83.82 0 231.49 

INH09 22 291.31 2.91 5 2 3 74.58 0 257.95 

INH10 22 300.27 1.75 8 1 5 109.14 0 254.82 

INH11 20 271.28 1.78 6 2 4 83.82 0 239.51 

INH12 20 270.25 1.77 7 1 4 100.18 0 229.28 

INH13 16 215.21 1.07 5 1 3 67.49 0 187.51 
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INH14 24 318.38 3.02 5 1 4 57.59 0 295.84 

INH15 18 239.28 2.26 4 1 3 54.35 0 222.50 

INH16 16 231.28 1.71 4 1 3 54.35 0 196.65 

INH17 20 270.25 1.72 7 1 4 100.18 0 229.28 

INH18 19 251.29 2.03 4 1 4 54.35 0 233.63 

INH19 21 275.31 2.99 4 1 3 54.35 0 249.93 

INH 10 137.14 - 0.97 4 3 1 68.01 0 122.65 

 

Abbreviations: Number of nonhydrogen atoms (N atoms); Molecular Weight (MW); Logarithm of partition Coefficient Between 

n-octanol and water LogP); Number of hydrogen bond acceptors (N-ON,O, and N atoms); Number of Hydrogen Bond Donors (N-

OHNH,OH, and NH groups); Number of Rotatable Bonds (N-rotb),Topological Polar Surface area (TPSA); and Number of 

violations (N violations); Number of violations (N violations); and Molecular volume (Å3). 

 

Table 4B: Bioactivity score of compounds according to Molinspiratin cheminformatics. 

 

Codes 
Bioactivities score 

EI KI GPCR PI NRC ICM 

INH01 -0.49 -0.59 -0.65 -0.93 -1.02 -0.87 

INH02 -0.40 -0.49 -0.53 -0.75 -0.77 -0.9 

INH03 -0.52 -0.54 -0.62 -0.83 -0.84 -0.82 

INH04 -0.48 -0.55 -0.55 -0.88 -0.94 -0.81 

INH05 -0.38 -0.32 -0.42 -0.68 -0.69 -0.77 

INH06 -0.45 -0.47 -0.54 -0.8 -0.81 -0.87 

INH07 -0.36 -0.36 -0.44 -0.75 -0.66 -0.79 

INH08 -0.38 -0.38 -0.43 -0.7 -0.57 -0.78 

INH09 -0.3 -0.27 -0.31 -0.48 -0.48 -0.67 

INH10 -0.54 -0.47 -0.54 -0.73 -0.75 -0.90 

INH11 -0.33 -0.40 -0.54 -0.66 -0.61 -0.90 

INH12 -0.50 -0.54 -0.61 -0.83 -0.83 -0.80 

INH13 -0.77 -1.00 -0.98 -1.25 -1.55 -1.06 

INH14 -0.23 -0.17 -0.11 -0.40 -0.38 -0.58 

INH15 -0.51 -0.56 -0.62 -0.90 -0.94 -0.91 

INH16 -0.70 -0.99 -1.01 -1.12 -1.48 -1.24 

INH17 -0.59 -0.63 -0.67 -0.84 -0.77 -0.83 

INH18 -0.31 -0.64 -0.35 -0.65 -0.79 -0.81 

INH19 -0.29 -0.26 -0.31 -0.50 -0.59 -0.68 

INH -0.66 -1.05 -1.39 -1.23 -2.33 -1.45 

 

Abbreviations: G protein-coupled receptor (GPCR) ligand, Ion channel modulator (ICM), Kinase inhibitor (KI), Nuclear receptor 

ligand (NRL), Protease inhibitor (PI), Enzyme inhibitor (EI). The gray color represents inactive and the green color represents 

moderate bioactivity under the scores reflect the predicted bioactivity, with more negative values indicating lower predicted activity 

for a given target. 
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Table 5: PASS prediction Properties of the Predicted Compounds. 
 

Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

INH01 

0,913 0,002 Glutamine-phenylpyruvate transaminase inhibitor 

0,908 0,004 Taurine dehydrogenase inhibitor 

0,895 0,003 Amine dehydrogenase inhibitor 

0,880 0,003 Threonine aldolase inhibitor 

0,860 0,002 Antituberculosic 

0,855 0,004 HMGCS2 expression enhancer 

0,853 0,003 Isopenicillin-N epimerase inhibitor 

0,851 0,008 Beta-adrenergic receptor kinase inhibitor 

0,851 0,008 G-protein-coupled receptor kinase inhibitor 

0,840 0,003 Antimycobacterial 

0,822 0,002 Phenylalanine(histidine) transaminase inhibitor 

0,813 0,003 Antiviral (Picornavirus) 

0,812 0,004 Phosphatidylserine decarboxylase inhibitor 

0,776 0,003 PfA-M1 aminopeptidase inhibitor 

0,759 0,002 Serine-pyruvate transaminase inhibitor 

0,748 0,003 Trimethylamine dehydrogenase inhibitor 

0,743 0,003 Nicotinamidase inhibitor 

0,743 0,004 Mcl-1 antagonist 

0,734 0,008 Antiviral (Poxvirus) 

0,720 0,029 Nicotinic alpha6beta3beta4alpha5 receptor antagonist 

 

INH02 

0,901 0,002 Antituberculosic 

0,900 0,002 Threonine aldolase inhibitor 

0,897 0,004 Taurine dehydrogenase inhibitor 

0,891 0,003 Amine dehydrogenase inhibitor 

0,872 0,003 HMGCS2 expression enhancer 

0,866 0,003 Antimycobacterial 

0,862 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,831 0,003 Phosphatidylserine decarboxylase inhibitor 

0,836 0,009 Beta-adrenergic receptor kinase inhibitor 

0,836 0,009 G-protein-coupled receptor kinase inhibitor 

0,769 0,003 Nicotinamidase inhibitor 

0,768 0,003 PfA-M1 aminopeptidase inhibitor 

0,767 0,004 Isopenicillin-N epimerase inhibitor 

0,725 0,004 Mcl-1 antagonist 

0,723 0,007 Corticosteroid side-chain-isomerase inhibitor 

0,715 0,005 Antiviral (Picornavirus) 

0,709 0,004 Phenylalanine(histidine) transaminase inhibitor 

 

INH03 

0,930 0,002 Antituberculosic 

0,896 0,003 Antimycobacterial 

0,863 0,002 Antiviral (Picornavirus) 

0,854 0,003 Phosphatidylserine decarboxylase inhibitor 

0,851 0,004 HMGCS2 expression enhancer 

0,839 0,008 Taurine dehydrogenase inhibitor 

0,801 0,003 Nicotinamidase inhibitor 
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Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

0,775 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,747 0,005 Amine dehydrogenase inhibitor 

0,742 0,003 PfA-M1 aminopeptidase inhibitor 

0,737 0,004 Mcl-1 antagonist 

 

INH04 

0,909 0,003 Taurine dehydrogenase inhibitor 

0,881 0,003 Amine dehydrogenase inhibitor 

0,860 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,844 0,003 Antituberculosic 

0,844 0,004 HMGCS2 expression enhancer 

0,839 0,003 Antimycobacterial 

0,804 0,013 G-protein-coupled receptor kinase inhibitor 

0,804 0,013 Beta-adrenergic receptor kinase inhibitor 

0,788 0,003 Antiviral (Picornavirus) 

0,782 0,005 Threonine aldolase inhibitor 

0,751 0,003 PfA-M1 aminopeptidase inhibitor 

0,709 0,005 Isopenicillin-N epimerase inhibitor 

0,705 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,705 0,007 CYP2A8 substrate 

0,708 0,011 Phosphatidylserine decarboxylase inhibitor 

0,703 0,009 Antiviral (Poxvirus) 

0,748 0,055 Phobic disorders treatment 

 

INH05 

0,890 0,002 Antituberculosic 

0,871 0,003 Antimycobacterial 

0,846 0,004 Amine dehydrogenase inhibitor 

0,843 0,007 Taurine dehydrogenase inhibitor 

0,814 0,004 Threonine aldolase inhibitor 

0,760 0,007 HMGCS2 expression enhancer 

0,748 0,003 Cytoprotectant 

0,748 0,018 Beta-adrenergic receptor kinase inhibitor 

0,748 0,018 G-protein-coupled receptor kinase inhibitor 

0,727 0,009 Phosphatidylserine decarboxylase inhibitor 

0,721 0,009 Glutamine-phenylpyruvate transaminase inhibitor 

 

INH06 

0,913 0,002 Antituberculosic 

0,880 0,005 G-protein-coupled receptor kinase inhibitor 

0,880 0,005 Beta-adrenergic receptor kinase inhibitor 

0,873 0,003 Antimycobacterial 

0,752 0,006 Phosphatidylserine decarboxylase inhibitor 

0,736 0,004 Cytoprotectant 

0,727 0,008 Threonine aldolase inhibitor 

0,709 0,009 HMGCS2 expression enhancer 

0,706 0,030 Taurine dehydrogenase inhibitor 

 

INH07 0,946 0,002 Taurine dehydrogenase inhibitor 

0,800 0,004 Antimycobacterial 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,797 0,003 Antituberculosic 
 
American J Cas Rep Rev, 2025                                                          ISSN: 2997-321X                                                                                        Page:  21 of 28 



 

Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

0,798 0,005 HMGCS2 expression enhancer 

0,787 0,005 Amine dehydrogenase inhibitor 

0,780 0,005 Threonine aldolase inhibitor 

0,759 0,006 Phosphatidylserine decarboxylase inhibitor 

0,752 0,004 Antiviral (Picornavirus) 

0,743 0,008 Antiviral (Poxvirus) 

0,719 0,021 Beta-adrenergic receptor kinase inhibitor 

0,719 0,021 G-protein-coupled receptor kinase inhibitor 

 

INH08 

0,895 0,003 Amine dehydrogenase inhibitor 

0,889 0,004 Taurine dehydrogenase inhibitor 

0,847 0,003 Antimycobacterial 

0,845 0,003 Antituberculosic 

0,811 0,012 Beta-adrenergic receptor kinase inhibitor 

0,811 0,012 G-protein-coupled receptor kinase inhibitor 

0,803 0,005 HMGCS2 expression enhancer 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,766 0,005 Threonine aldolase inhibitor 

0,747 0,004 Antiviral (Picornavirus) 

0,744 0,035 Gluconate 2-dehydrogenase (acceptor) inhibitor 

0,710 0,004 Cytoprotectant 

 

INH09 

0,865 0,005 Taurine dehydrogenase inhibitor 

0,864 0,003 Amine dehydrogenase inhibitor 

0,862 0,002 Antituberculosic 

0,851 0,003 Threonine aldolase inhibitor 

0,848 0,003 Antimycobacterial 

0,799 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,792 0,005 HMGCS2 expression enhancer 

0,773 0,005 Phosphatidylserine decarboxylase inhibitor 

0,743 0,004 Isopenicillin-N epimerase inhibitor 

0,730 0,020 Beta-adrenergic receptor kinase inhibitor 

0,730 0,020 G-protein-coupled receptor kinase inhibitor 

0,710 0,004 Cytoprotectant 

 

INH10 

0,924 0,002 Antituberculosic 

0,904 0,002 Antimycobacterial 

0,865 0,003 HMGCS2 expression enhancer 

0,778 0,016 Taurine dehydrogenase inhibitor 

0,754 0,006 Phosphatidylserine decarboxylase inhibitor 

0,741 0,004 Transcription factor STAT3 inhibitor 

0,708 0,003 PfA-M1 aminopeptidase inhibitor 

0,708 0,005 Antiviral (Picornavirus) 

 

INH11 0,891 0,002 Antituberculosic 

0,879 0,003 Amine dehydrogenase inhibitor 

0,874 0,003 Antimycobacterial 

0,863 0,005 Taurine dehydrogenase inhibitor 

0,839 0,004 HMGCS2 expression enhancer 
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Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

0,809 0,004 Threonine aldolase inhibitor 

0,792 0,014 G-protein-coupled receptor kinase inhibitor 

0,792 0,014 Beta-adrenergic receptor kinase inhibitor 

0,776 0,003 Cytoprotectant 

0,723 0,009 Phosphatidylserine decarboxylase inhibitor 

0,716 0,003 PfA-M1 aminopeptidase inhibitor 

0,714 0,009 Glutamine-phenylpyruvate transaminase inhibitor 

0,722 0,045 Gluconate 2-dehydrogenase (acceptor) inhibitor 

 

INH12 

0,928 0,002 Antituberculosic 

0,895 0,003 Antimycobacterial 

0,872 0,002 Phosphatidylserine decarboxylase inhibitor 

0,864 0,003 HMGCS2 expression enhancer 

0,862 0,005 Taurine dehydrogenase inhibitor 

0,854 0,003 Antiviral (Picornavirus) 

0,845 0,002 Nicotinamidase inhibitor 

0,823 0,004 Glutamine-phenylpyruvate transaminase inhibitor 

0,789 0,004 Amine dehydrogenase inhibitor 

0,762 0,004 Mcl-1 antagonist 

0,753 0,003 PfA-M1 aminopeptidase inhibitor 

0,718 0,008 Threonine aldolase inhibitor 

0,718 0,009 Antiviral (Poxvirus) 

0,718 0,040 Acrocylindropepsin inhibitor 

0,718 0,040 Chymosin inhibitor 

0,718 0,040 Saccharopepsin inhibitor 

 

INH13 

0,956 0,001 HMGCS2 expression enhancer 

0,928 0,002 Antituberculosic 

0,913 0,003 Mcl-1 antagonist 

0,904 0,002 Antimycobacterial 

0,796 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,792 0,003 Isopenicillin-N epimerase inhibitor 

0,791 0,004 Amine dehydrogenase inhibitor 

0,761 0,003 PfA-M1 aminopeptidase inhibitor 

0,748 0,003 Neuropeptide Y2 antagonist 

0,746 0,022 Taurine dehydrogenase inhibitor 

0,720 0,008 Threonine aldolase inhibitor 

0,707 0,004 Amyloid beta precursor protein antagonist 

 

INH14 

0,912 0,003 Taurine dehydrogenase inhibitor 

0,762 0,006 HMGCS2 expression enhancer 

0,702 0,008 Amine dehydrogenase inhibitor 

 

INH15 0,889 0,004 Taurine dehydrogenase inhibitor 

0,876 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,867 0,003 Amine dehydrogenase inhibitor 

0,866 0,002 Antituberculosic 

0,847 0,003 Antimycobacterial 

0,830 0,004 HMGCS2 expression enhancer 
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Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

0,808 0,004 Threonine aldolase inhibitor 

0,813 0,012 G-protein-coupled receptor kinase inhibitor 

0,813 0,012 Beta-adrenergic receptor kinase inhibitor 

0,804 0,003 Isopenicillin-N epimerase inhibitor 

0,804 0,004 Phosphatidylserine decarboxylase inhibitor 

0,761 0,004 Antiviral (Picornavirus) 

0,754 0,003 PfA-M1 aminopeptidase inhibitor 

0,740 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,710 0,003 Serine-pyruvate transaminase inhibitor 

0,711 0,009 Antiviral (Poxvirus) 

 

INH16 

0,796 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,771 0,004 CYP2E1 inhibitor 

0,761 0,004 Antimycobacterial 

0,759 0,004 Antituberculosic 

0,753 0,004 Mcl-1 antagonist 

0,747 0,022 Taurine dehydrogenase inhibitor 

0,721 0,003 PfA-M1 aminopeptidase inhibitor 

 

INH17 

0,861 0,005 Taurine dehydrogenase inhibitor 

0,845 0,004 HMGCS2 expression enhancer 

0,841 0,003 Phosphatidylserine decarboxylase inhibitor 

0,838 0,003 Antituberculosic 

0,809 0,004 Antimycobacterial 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,788 0,004 Amine dehydrogenase inhibitor 

0,783 0,004 Arylalkyl acylamidase inhibitor 

0,776 0,004 
Aldehyde dehydrogenase (pyrroloquinoline-quinone) 

inhibitor 

0,768 0,003 Nicotinamidase inhibitor 

0,765 0,004 Antiviral (Picornavirus) 

0,734 0,003 Phenylalanine racemase (ATP-hydrolysing) inhibitor 

0,708 0,009 Threonine aldolase inhibitor 

 

INH18 

0,860 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,841 0,004 Amine dehydrogenase inhibitor 

0,836 0,008 Taurine dehydrogenase inhibitor 

0,824 0,003 Antituberculosic 

0,807 0,004 Antimycobacterial 

0,802 0,004 Threonine aldolase inhibitor 

0,761 0,004 Thiol protease inhibitor 

0,750 0,004 Isopenicillin-N epimerase inhibitor 

0,726 0,009 Phosphatidylserine decarboxylase inhibitor 

0,710 0,004 Mcl-1 antagonist 

0,705 0,004 Phenylalanine(histidine) transaminase inhibitor 

 

INH19 0,883 0,004 Taurine dehydrogenase inhibitor 

0,876 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,861 0,003 Amine dehydrogenase inhibitor 
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Codes 

Probability of 

Activity 

(Pa) 

Probability 

of 

Activity 

(Pi) 

Therapeutic Activity 

0,838 0,003 Isopenicillin-N epimerase inhibitor 

0,825 0,004 Threonine aldolase inhibitor 

0,825 0,004 HMGCS2 expression enhancer 

0,770 0,003 Antituberculosic 

0,753 0,004 Antimycobacterial 

0,751 0,006 Phosphatidylserine decarboxylase inhibitor 

0,740 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,715 0,005 Antiviral (Picornavirus) 

 

INH 

0,968 0,001 Taurine dehydrogenase inhibitor 

0,926 0,001 Trimethylamine dehydrogenase inhibitor 

0,847 0,004 Amine dehydrogenase inhibitor 

0,842 0,003 Isopenicillin-N epimerase inhibitor 

0,825 0,004 
Aldehyde dehydrogenase (pyrroloquinoline-quinone) 

inhibitor 

0,816 0,004 Arylalkyl acylamidase inhibitor 

0,810 0,003 Antituberculosic 

0,798 0,004 Antimycobacterial 

0,790 0,003 Nitrilase inhibitor 

0,782 0,002 Maillard reaction inhibitor 

0,781 0,014 Nicotinic alpha6beta3beta4alpha5 receptor antagonist 

0,761 0,001 Aralkylamine dehydrogenase inhibitor 

0,774 0,015 Glucose oxidase inhibitor 

0,754 0,008 Manganese peroxidase inhibitor 

0,757 0,013 Arylacetonitrilase inhibitor 

0,758 0,016 Nicotinic alpha2beta2 receptor antagonist 

0,738 0,004 N-methylhydantoinase (ATP-hydrolysing) inhibitor 

0,739 0,009 Nucleoside oxidase (H2O2-forming) inhibitor 

0,730 0,004 Nicotinate dehydrogenase inhibitor 

0,724 0,010 Peroxidase inhibitor 

0,739 0,030 Nootropic 

0,713 0,008 Aspartate-phenylpyruvate transaminase inhibitor 

0,712 0,013 Phthalate 4,5-dioxygenase inhibitor 

0,716 0,031 
Glycosylphosphatidylinositol phospholipase D 

inhibitor 

0,701 0,076 Phobic disorders treatment 
 

Abbreviations: Tuscan shading indicates the probability of activity values, and Gray represents the probability of inactivity values. 
 

Table 6A: Absorption Properties of the Predicted Compounds. 
 

Codes LogS HIA  Caco-2 LogKp 
P-gp 

subs 

P-gp I 

Inhi 

P-gp II 

Inhi 

INH01 -2.076 93.954 1.329 -2.682 No No No 

INH02 -2.894 93.974 0.745 -3.29 No No No 

INH03 -3.641 85.889 -0.1 -2.67 Yes No No 

INH04 -3.011 93.211 1.353 -2.677 No No No 

INH05 -2.957 96.317 1.328 -2.767 No No No 

INH06 -3.003 95.629 1.382 -2. 713 No No No 
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INH07 -3.572 94.695 1.386 -3.06 Yes No No 

INH08 -3.004 94.276 1.369 -3.048 Yes No No 

INH09 -3.322 94.223 1.086 -2.778 Yes No No 

INH10 -4.02 83.223 0.265 -2.742 No No No 

INH11 -3.013 94.858 1.197 -2.909 No No No 

INH12 -3.052 85.921 0.194 -2.68 Yes No No 

INH13 -1.8896 95.967 0.801 -3.116 No No No 

INH14 -4.042 96.436 -4.042 -2.678 No Yes Yes 

INH15 -3.237 95.012 1.322 -2.568 No No No 

INH16 -3.321 93.537 1.317 -2.694 No No No 

INH17 -3.643 84.54 0.235 -2.79 No No No 

INH18 -3.415 92.813 1.35 -2.398 No No No 

INH19 -3.554 94.021 1.374 -2.518 Yes No No 

INH -1.6 75.651 0.627 -3.173 No No No 

 

Abbreviations: Water solubility (logS, log mol/L), Human Intestinal Absorption (HIA, %), Human colon epithelial cancer cell line 

(Caco-2, Log Papp; log cm/s), Skin permeability (LogKp; cm/h), Permeability glycoprotein I, II (P-gp I, II). Gray shading indicates 

low values, green represents moderate values, and Tuscan signifies high values. Pink shading and "Yes" denote an effect on the 

target, while white shading and "No" indicate no effect on the target. 
 

Table 6B:  Distribution Properties of the Predicted Compounds. 
 

Codes VDss FU  LogBB Log PS 

INH01 -0.349 0.204 0.205 -2.252 

INH02 -0.149 0.333 -0.184 -2.497 

INH03 -0.232 0.076 -0.518 -2.484 

INH04 -0.276 0.203 0.146 -2.141 

INH05 -0.201 0.262 0.252 -2.805 

INH06 -0.407 0.221 0.22 -2.859 

INH07 -0.097 0.214 -0.38 -2.947 

INH08 -0.015 0.17 -0.404 -2.946 

INH09 0.114 0.098 0.053 -2.216 

INH10 -0.329 0.071 -0.854 -2.742 

INH11 -0.322 0.227 -0.479 -2.986 

INH12 -0.277 0.118 -0.553 -2.491 

INH13 -0.612 0.45 -0.3 -2.881 

INH14 0.212 0.031 0.271 -2.108 

INH15 -0.049 0.201 0.34 -2.254 

INH16 -0.298 0.293 0.261 -2.836 

INH17 -0.431 0.089 -0.574 -2.472 

INH18 -0.012 0.107 0.317 -2.246 

INH19 0.081 0.067 0.208 -1.973 

INH -0.432 0.728 -0.117 -3.022 

 

Abbreviations: Distribution Volume in Humans (VDSS, Log L/kg), Fraction Unbound (FU), Blood blood-brain barrier Permeability 

(LogBB), and Central Nervous System Permeability (LogPS). Gray shading indicates low values, green represents moderate values, 

and Tuscan signifies high values.  
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Table 6C:  Metabolism Properties of the Predicted Compounds. 
 

Codes 

CYP 

1A2 

CYP 

3A4 

CYP 

2C9 

CYP 

2C19 

CYP 

2D6 

Inhi Inhi Subs Inhi Inhi Inhi Subs 

INH01 Yes No Yes No No No No 

INH02 Yes No No No No No No 

INH03 Yes No Yes No No No No 

INH04 Yes No Yes No Yes No No 

INH05 Yes No No No No No No 

INH06 No No Yes No No No No 

INH07 Yes No Yes No No No No 

INH08 Yes No Yes No No No No 

INH09 Yes No Yes No Yes No No 

INH10 Yes No Yes No Yes No No 

INH11 Yes No No No No No No 

INH12 Yes No Yes No No No No 

INH13 Yes No No No No No No 

INH14 Yes No Yes Yes Yes No No 

INH15 Yes No Yes No No No No 

INH16 Yes No No No No No No 

INH17 Yes No Yes No No No No 

INH18 Yes Yes Yes No Yes No No 

INH19 Yes No Yes No Yes No No 

INH No No No No No No No 

 

Abbreviations: CYP (Cytochrome P450), Inhi (Inhibitor), Subs (Substrate). The pink color and "Yes" indicate an effect on the 

target, while the white color and "No" indicate no effect on the target. 
 

Table 6D:  Excretion Properties of the Predicted Compounds. 
 

Codes 

Excretion 

CLtot 

Log ml/min/kg 

Renal OCT2 substrate 

(Yes/ No) 

INH01 0.717 No 

INH02 0.665 No 

INH03 0.744 No 

INH04 -0.054 No 

INH05 0.873 No 

INH06 0.822 No 

INH07 0.771 No 
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INH08 0.821 No 

INH09 0.684 No 

INH10 0.834 No 

INH11 0.841 No 

INH12 0.712 No 

INH13 0.757 No 

INH14 0.966 No 

INH15 0.759 No 

INH16 0.027 No 

INH17 0.691 No 

INH18 0.834 No 

INH19 0.678 No 

INH 0.782 No 

 

Abbreviations: Total clearance (CLtot),Organic cation transporter 2 (OCT2). The gray color represents low, the green color 

represents moderate, and the Tusca n colo r represents high clearance in accordance with the value by Log ml/min/kg. 
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